The role of H1- and H2-receptors in the modulatory effects of histaminergic agents on adrenergic neurotransmission in rat vas deferens. 1986

S Todorov, and R Zamfirova

The role of the H1- and H2-receptors in the modulatory effects of histamine and other histaminergic drugs on smooth muscle adrenergic neurotransmission was studied on isolated preparations from rat vas deferens. The typical biphasic action (potentiation by low concentrations and inhibition by high concentrations) of histamine and some H1- or H2-agonists on vas deferens contractions induced by low frequency electrical stimulation (ES) was markedly changed by H1- or H2-antagonists. After blockade of H1-receptors, the potentiating effect of histamine and the histaminergic agonists was diminished or even reversed. The inhibition of the smooth muscle contractions by the drugs tested was stronger after H1-antagonists. Blockade of H2-receptors usually enhanced the potentiating effect of the histaminergic agonists on ES-evoked vas deferens contractions. The inhibitory action of histamine and the histaminergic agents tested was decreased or even reversed after H2-receptor blockade. These results confirm the presence of H1-excitatory and H2-inhibitory receptors whose activation or inhibition can modulate adrenergic neurotransmission in vas deferens.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011968 Receptors, Histamine Cell-surface proteins that bind histamine and trigger intracellular changes influencing the behavior of cells. Histamine receptors are widespread in the central nervous system and in peripheral tissues. Three types have been recognized and designated H1, H2, and H3. They differ in pharmacology, distribution, and mode of action. Histamine Binding Sites,Histamine Receptors,Histamine Receptor,Binding Sites, Histamine,Receptor, Histamine,Sites, Histamine Binding
D011969 Receptors, Histamine H1 A class of histamine receptors discriminated by their pharmacology and mode of action. Most histamine H1 receptors operate through the inositol phosphate/diacylglycerol second messenger system. Among the many responses mediated by these receptors are smooth muscle contraction, increased vascular permeability, hormone release, and cerebral glyconeogenesis. (From Biochem Soc Trans 1992 Feb;20(1):122-5) H1 Receptor,Histamine H1 Receptors,H1 Receptors,Histamine H1 Receptor,Receptors, H1,H1 Receptor, Histamine,H1 Receptors, Histamine,Receptor, H1,Receptor, Histamine H1
D011970 Receptors, Histamine H2 A class of histamine receptors discriminated by their pharmacology and mode of action. Histamine H2 receptors act via G-proteins to stimulate ADENYLYL CYCLASES. Among the many responses mediated by these receptors are gastric acid secretion, smooth muscle relaxation, inotropic and chronotropic effects on heart muscle, and inhibition of lymphocyte function. (From Biochem Soc Trans 1992 Feb;20(1):122-5) Histamine H2 Receptors,H2 Receptors,Receptors, H2,H2 Receptors, Histamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous

Related Publications

S Todorov, and R Zamfirova
February 1988, European journal of pharmacology,
S Todorov, and R Zamfirova
January 1989, Acta physiologica et pharmacologica Bulgarica,
S Todorov, and R Zamfirova
May 1980, British journal of pharmacology,
S Todorov, and R Zamfirova
June 1981, Japanese journal of pharmacology,
S Todorov, and R Zamfirova
October 1996, General pharmacology,
S Todorov, and R Zamfirova
October 1982, Pathologie-biologie,
S Todorov, and R Zamfirova
June 1970, Archives internationales de pharmacodynamie et de therapie,
S Todorov, and R Zamfirova
January 1994, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!