Correlation between the negative inotropic potency and binding parameters of 1,4-dihydropyridine and phenylalkylamine calcium channel blockers in cat heart. 1986

A Goll, and H Glossmann, and R Mannhold

Partially purified plasma membranes were prepared from cat ventricle. The purification factors for the calcium channel ligands (+)-3H-PN 200-110, 3H-nimodipine (1,4-dihydropyridines) and (-)-3-H-desmethoxyverapamil (a phenylalkylamine) were 3.1-, 3.4- and 2.9-fold, respectively, whilst beta-adrenoceptors labelled with (-)-3H-dihydroalprenolol were purified 3.0-fold. (+)-3H-PN 200-110 bound to 930 +/- 140 fmol/mg of membrane protein with a dissociation constant of 70 pmol/l at 25 degrees C. Under the same conditions 3H-nimodipine bound to 490 +/- 24 fmol/mg of sites with a KD of 120 pmol/l. (-)-3-H-desmethoxyverapamil bound to 530 +/- 55 fmol/mg of sites with a KD of 2.47 nmol/l. Twelve 1,4-dihydropyridines were evaluated for binding inhibition constants (Ki) with (+)-3H-PN 200-110 and 13 phenylalkylamines with (-)-3-H-desmethoxyverapamil in radioligand binding assays. Of the twelve 1,4-dihydropyridines evaluated (+/-)-nitrendipine was the most potent with a Ki-value of 280 pmol/l, nifedipine had a Ki-value of 500 pmol/l and the weakest drug tested, (+/-)-Bay b 4328, had a Ki-value of 14.3 nmol/l. The EC50-values of the same 1,4-dihydropyridines to inhibit the electrically driven cat papillary muscle were 77- to 3,450-fold higher and little correlation existed between Ki and EC50-values. Thirteen phenylalkylamines were tested for their potency to inhibit (-)-3-H-desmethoxyverapamil binding. The most potent phenylalkylamine with respect to negative inotropy was (+/-)-D 595 with an EC50-value of 794 nmol/l, the least potent substance was (+/-)-Sz 45 with an EC50-value of 39.8 mumol/l. The binding inhibition constants for the phenylalkylamines were 13- to 322-fold lower than the values for negative inotropy, but a significant positive correlation between the Ki and EC50-values (n = 12, r = 0.84) was observed. The absolute differences may reflect the state-dependent binding of phenylalkylamines to the channel. QSAR analysis revealed nearly identical correlations between physicochemical substituent properties on the one hand and binding affinities or functional potency on the other hand. In both cases the electronic properties (F-constant) of ring substituents mainly determine the variance in potency.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Goll, and H Glossmann, and R Mannhold
September 1986, Journal of molecular and cellular cardiology,
A Goll, and H Glossmann, and R Mannhold
October 1987, The Journal of pharmacology and experimental therapeutics,
A Goll, and H Glossmann, and R Mannhold
December 1988, Journal of cardiovascular pharmacology,
A Goll, and H Glossmann, and R Mannhold
October 1987, The Journal of biological chemistry,
A Goll, and H Glossmann, and R Mannhold
January 2008, Prikladnaia biokhimiia i mikrobiologiia,
A Goll, and H Glossmann, and R Mannhold
November 1987, Journal of clinical pharmacology,
A Goll, and H Glossmann, and R Mannhold
May 1988, Biomedical & environmental mass spectrometry,
A Goll, and H Glossmann, and R Mannhold
January 1988, Archives internationales de pharmacodynamie et de therapie,
A Goll, and H Glossmann, and R Mannhold
April 1991, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!