Nucleotide sequence of Bacillus subtilis dnaB: a gene essential for DNA replication initiation and membrane attachment. 1987

T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka

The complete nucleotide sequence of the Bacillus subtilis dnaB gene and its flanking regions was determined. The dnaB gene is essential for both replication initiation and membrane attachment of the origin region of the chromosome and plasmid pUB110. It has been known that there are two different classes (dnaBI and dnaBII) in the dnaB mutants; dnaBI is essential for both chromosome and pUB110 replication, whereas dnaBII is necessary only for chromosome replication. The nucleotide sequence revealed that dnaBI and dnaBII are two functional domains in the single dnaB gene. The mutation sites of two mutants, belonging to dnaBI and dnaBII, respectively, were also determined as substitutions of amino acids. The putative DnaB protein deduced from nucleotide sequence consists of 472 amino acids (55 kDa) with no cysteine residue. A 55-kDa polypeptide produced in an in vitro transcription-translation system was labeled with [35S]methionine but not with [35S]cysteine. The DnaB protein has a highly hydrophobic sequence of 20 amino acids in its N-terminal region, a possible DNA binding site, and two possible ATP binding sites. The dnaBI domain is between the DNA binding site and one of the ATP binding sites; the dnaBII domain is close to the other ATP binding site. Comparison of the amino acid sequence between the "dnaB protein" and those of other dna genes of Escherichia coli showed no homology, suggesting that the dnaB gene of B. subtilis may be analogous to a hitherto undiscovered gene in E. coli.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
February 2005, Molecular microbiology,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
December 1986, Nucleic acids research,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
June 2004, Molecular microbiology,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
July 1967, Proceedings of the National Academy of Sciences of the United States of America,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
October 1983, Proceedings of the National Academy of Sciences of the United States of America,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
March 1989, Journal of bacteriology,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
January 1981, Mikrobiologiia,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
April 1987, European journal of biochemistry,
T Hoshino, and T McKenzie, and S Schmidt, and T Tanaka, and N Sueoka
January 1968, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!