Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification. 1986

R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han

The branched-chain alpha-ketoacid dehydrogenase complex, like the pyruvate dehydrogenase complex, is an intramitochondrial enzyme subject to regulation by covalent modification. Phosphorylation causes inactivation and dephosphorylation causes activation of both complexes. The branched-chain alpha-ketoacid dehydrogenase kinase, believed distinct from pyruvate dehydrogenase kinase, is an integral component of the branched-chain alpha-ketoacid dehydrogenase complex and is sensitive to inhibition by branched-chain alpha-ketoacids, alpha-chloroisocaproate, phenylpyruvate, clofibric acid, octanoate and dichloroacetate. Phosphorylation of branched-chain alpha-ketoacid dehydrogenase occurs at two closely-linked serine residues (sites 1 and 2) of the alpha-subunit of the decarboxylase. HPLC and sequence data suggest homology of the amino acid sequence adjacent to phosphorylation sites 1 and 2 of complexes isolated from several different tissues. Stoichiometry for phosphorylation of all of the complexes studies was about 1 mol P/mol alpha-subunit for 95% inactivation and 1.5 mol P/mol alpha-subunit for maximally phosphorylated complex. Site 1 and site 2 were phosphorylated at similar rates until total phosphorylation exceeded 1 mol P/mol alpha-subunit. The complexes from rabbit kidney, rabbit heart, and rat heart showed 30-40% additional phosphorylation of the alpha-subunit beyond 95% inactivation. Site specificity studies carried out with the kinase partially inhibited with alpha-chloroisocaproate suggest that phosphorylation of site 1 is primarily responsible for regulation of the complex. The capacity of the branched-chain alpha-ketoacid dehydrogenase to oxidize pyruvate (Km = 0.8 mM, Vmax = 20% of that of alpha-ketoisovalerate) interferes with the estimation of activity state of the hepatic pyruvate dehydrogenase complex. The disparity between the activity states of the two complexes in most physiologic states contributes to this interference. An inhibitory antibody for branched-chain alpha-ketoacid dehydrogenase can be used to prevent interference with the pyruvate dehydrogenase assay. Almost all of the hepatic branched-chain alpha-ketoacid dehydrogenase in chow-fed rats is active (greater than 90% dephosphorylated). In contrast, almost all of the hepatic enzyme of rats fed a low-protein (8%) diet is inactive (greater than 85% phosphorylated). Fasting of chow-fed rats has no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e. greater than 90% of the enzyme remains in the active state. However, fasting of rats maintained on low-protein diets greatly activates the hepatic enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007651 Keto Acids Carboxylic acids that contain a KETONE group. Oxo Acids,Oxoacids,Acids, Keto,Acids, Oxo
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat

Related Publications

R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
January 1990, Comparative biochemistry and physiology. B, Comparative biochemistry,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
December 2004, Structure (London, England : 1993),
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
June 1998, Frontiers in bioscience : a journal and virtual library,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
April 2000, The Biochemical journal,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
March 2009, Bioscience, biotechnology, and biochemistry,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
January 1997, Mineral and electrolyte metabolism,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
April 1985, Clinica chimica acta; international journal of clinical chemistry,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
July 1994, The Journal of biological chemistry,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
June 1980, Archives of biochemistry and biophysics,
R A Harris, and R Paxton, and S M Powell, and G W Goodwin, and M J Kuntz, and A C Han
December 1993, Biochemistry and molecular biology international,
Copied contents to your clipboard!