[The quantitative determination of vitamin D3 and its metabolites in plasma]. 1986

R Kaune, and J Harmeyer

A method is described which enables determination of vitamin D3 and its physiologically most important metabolites, i.e. 25-OHD3, 24,25-(OH)2D3, 25,26-(OH)2D3 and 1,25-(OH)2D3 in a plasma sample of about 2 to 4 ml. The whole procedure involves two preparative and one analytical steps: Extraction with methanol/methylene chloride (2:1), chromatographic separation on Lipidex 5000 using a stepwise gradient of n-hexane and chloroform and finally HPLC separation on Zorbax-Sil columns with n-hexane isopropanol mixtures and subsequently reversed phase separation on RP 18-columns and mixtures of methanol and water. Except for 1,25-(OH)2D3 all D compounds were quantified by UV-detection with 1.4 ng of substance being the lowest detectable amount. 1,25-(OH)2D3 was measured by radioimmunoassay. Prior to HPLC analysis the extract was separated into three fractions on Lipidex 5000 which contained 1) vitamin D3, 2) 25-OHD3 and 3) the dihydroxy metabolites. The three fractions were separated by HPLC using different mixtures of isopropanol/n-hexane and methanol/water, respectively. Retention times of the individual D-components longer than 10 min appeared to be essential to separate these compounds from accompanying material. Overall recoveries of the individual metabolites were for vitamin D3 48.9%, for 25-OHD3 54.2%, for 24,25-(OH)2D3 50.9% and for 1,25-(OH)2D3 52.5%. Application of the methods to plasma samples from pigs with pseudovitamin D deficiency rickets, typ I, revealed a reduced concentration of 1,25-(OH)2D3 and 24,25-(OH)2D3 and an elevated level of 25-OHD3 in these animals. The results obtained by this method contributed substantially to a better understanding of the aetiological factors associated with this disease.

UI MeSH Term Description Entries
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002762 Cholecalciferol Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D 3,(3 beta,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol,Calciol,Cholecalciferols,Vitamin D3
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry

Related Publications

R Kaune, and J Harmeyer
January 1980, Methods in enzymology,
R Kaune, and J Harmeyer
February 1999, Journal of chromatography. B, Biomedical sciences and applications,
R Kaune, and J Harmeyer
June 1996, Phytochemistry,
R Kaune, and J Harmeyer
January 1974, Prikladnaia biokhimiia i mikrobiologiia,
R Kaune, and J Harmeyer
January 1982, Metabolic bone disease & related research,
R Kaune, and J Harmeyer
September 2010, Analytical and bioanalytical chemistry,
R Kaune, and J Harmeyer
June 1999, Journal of pharmaceutical and biomedical analysis,
R Kaune, and J Harmeyer
February 1987, Nihon juigaku zasshi. The Japanese journal of veterinary science,
Copied contents to your clipboard!