Molecular cloning and characterization of the Streptomyces hygroscopicus alpha-amylase gene. 1987

S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka

We have isolated and sequenced a gene (amy) coding for alpha-amylase (EC 3.2.1.1.) from the Streptomyces hygroscopicus genome (H. Hidaka, Y. Koaze, K. Yoshida, T. Niwa, T. Shomura, and T. Niida, Die Stärke 26:413-416, 1974). Amylase was purified to obtain amino acid sequence information which was used to synthesize oligonucleotide probes. amy-containing Escherichia coli cosmids identified by hybridization did not express amylase activity. Subcloning experiments indicated that amy could be expressed from the lac promoter in E. coli or from its own promoter in S. lividans. The amy nucleotide sequence indicated that it coded for a protein of 52 kilodaltons (478 amino acids). Secreted alpha-amylase contained amino- and carboxy-terminal as well as internal amino acid sequences which were consistent with the nucleotide sequence. The 30-residue leader sequence showed similarities to those found in other procaryotes. The DNA sequence 5' to the amy structural gene contained a sequence complementary to the 3'-terminal sequence of 16S rRNA of S. lividans (M. J. Bibb and S. N. Cohen, Mol. Gen. Genet. 187:265-277, 1982). The transcriptional start points of amy were determined by mung bean nuclease mapping, but the promoter of amy was not similar to the consensus sequence found in other procaryotes.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000516 alpha-Amylases Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units. Taka-Amylase A,alpha-Amylase,Alpha-Amylase Bayer,Maxilase,Mégamylase,alpha-1,4-D-Glucanglucanohydrolase,Alpha Amylase Bayer,AlphaAmylase Bayer,Taka Amylase A,TakaAmylase A,alpha 1,4 D Glucanglucanohydrolase,alpha Amylase,alpha Amylases
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
April 1993, Biochimica et biophysica acta,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
January 1993, Biochimica et biophysica acta,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
March 1988, Molecular microbiology,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
April 1995, Biochemistry and molecular biology international,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
February 1991, Molecular & general genetics : MGG,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
September 1997, Gene,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
November 1983, Biochemical and biophysical research communications,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
December 1986, Biochemical and biophysical research communications,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
August 1993, Bioscience, biotechnology, and biochemistry,
S Hoshiko, and O Makabe, and C Nojiri, and K Katsumata, and E Satoh, and K Nagaoka
December 1988, Gene,
Copied contents to your clipboard!