Structure of in-vivo transcribing chromatin as studied in simian virus 40 minichromosomes. 1986

W De Bernardin, and T Koller, and J M Sogo

In order to study the structure of chromatin during transcription, individual in-vivo transcribing simian virus 40 (SV40) minichromosomes were analyzed in the electron microscope after crosslinking the nascent RNA strands with different psoralen derivatives to the template DNA. Since psoralen crosslinks the DNA between nucleosomes, spreading of the crosslinked DNA and DNA-RNA complexes reveals single-stranded bubbles at positions where nucleosomes were located. We found that the transcribing SV40 minichromosomes contained a similar number of nucleosomes as did the minichromosomes without crosslinked nascent RNA. The nascent RNA was crosslinked in about equal proportions either in single-stranded bubbles of nucleosomal length or in continuously crosslinked regions between bubbles, in contrast with control experiments with ribosomal chromatin of Dictyostelium. Treatment of SV40 minichromosomes with 1.2 M-NaCl before and during photocrosslinking with psoralen led to the disappearance of the single-stranded bubbles. Since no bubbles could be detected at the attachment sites of the RNA molecules when the nucleosomes were disrupted in high salt, and since in about half of the molecules the RNA was attached to fully crosslinked linker DNA, we assume that the single-stranded bubbles with crosslinked RNA are not due to protection by the elongating RNA polymerase II complex, but are rather due to nucleosome-like structures. At the resolution level of single nucleosomes, these results imply for the first time that nucleosome-like structures (perhaps modified compared with "normal" nucleosomes) on SV40 minichromosomes do not prevent transcription elongation by RNA polymerase II.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011564 Furocoumarins Polycyclic compounds consisting of a furan ring fused with coumarin. They commonly occur in PLANTS, especially UMBELLIFERAE and RUTACEAE, as well as PSORALEA. Furanocoumarin,Furanocoumarins,Furocoumarin,Psoralens,Angelicins
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

W De Bernardin, and T Koller, and J M Sogo
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
W De Bernardin, and T Koller, and J M Sogo
April 1981, Journal of virology,
W De Bernardin, and T Koller, and J M Sogo
January 1989, Methods in enzymology,
W De Bernardin, and T Koller, and J M Sogo
January 1989, Methods in enzymology,
W De Bernardin, and T Koller, and J M Sogo
August 1978, Science (New York, N.Y.),
W De Bernardin, and T Koller, and J M Sogo
November 1985, Molecular and cellular biology,
W De Bernardin, and T Koller, and J M Sogo
November 1977, Journal of virology,
W De Bernardin, and T Koller, and J M Sogo
May 1987, Nucleic acids research,
W De Bernardin, and T Koller, and J M Sogo
January 1980, Journal of virology,
W De Bernardin, and T Koller, and J M Sogo
August 1984, Molecular and cellular biology,
Copied contents to your clipboard!