Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. 1987

C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley

We cloned and analyzed the integrated human papillomavirus type 16 (HPV-16) genomes that are present in the human cervical carcinoma cell lines SiHa and CaSki. The single HPV-16 genome in the SiHa line was cloned as a 10-kilobase (kb) HindIII fragment. Integration of the HPV-16 genome occurred at bases 3132 and 3384 with disruption of the E2 and E4 open reading frames (ORFs). An additional 52-base-pair deletion of HPV-16 sequences fused the E2 and E4 ORFs. the 5' portion of the disrupted E2 ORF terminated immediately in the contiguous human right-flanking sequences. Heteroduplex analysis of this cloned integrated viral genome with the prototype HPV-16 DNA revealed no other deletions, insertions, or rearrangements. DNA sequence analysis of the E1 ORF, however, revealed the presence of an additional guanine at nucleotide 1138, resulting in the fusion of the E1a and E1b ORFs into a single E1 ORF. Sequence analysis of the human flanking sequences revealed one-half of an Alu sequence at the left junction and a sequence highly homologous to the human O repeat in the right-flanking region. Analysis of the three most abundant BamHI clones from the CaSki line showed that these consisted of full-length, 7.9-kb HPV-16 DNA; a 6.5-kb genome resulting from a 1.4-kb deletion of the long control region; and a 10.5-kb clone generated by a 2.6-kb tandem repeat of the 3' early region. These HPV-16 genomes were arranged in the host chromosomes as head-to-tail, tandemly repeated arrays. Transcription analysis revealed expression of the HPV-16 genome in each of these two cervical carcinoma cell lines, albeit at significantly different levels. Preliminary mapping of the viral RNA with subgenomic strand-specific probes indicated that viral transcription appeared to be derived primarily from the E6 and E7 ORFs.

UI MeSH Term Description Entries
D009692 Nucleic Acid Heteroduplexes Double-stranded nucleic acid molecules (DNA-DNA or DNA-RNA) which contain regions of nucleotide mismatches (non-complementary). In vivo, these heteroduplexes can result from mutation or genetic recombination; in vitro, they are formed by nucleic acid hybridization. Electron microscopic analysis of the resulting heteroduplexes facilitates the mapping of regions of base sequence homology of nucleic acids. Heteroduplexes, Nucleic Acid,Heteroduplex DNA,Acid Heteroduplexes, Nucleic,DNA, Heteroduplex
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002583 Uterine Cervical Neoplasms Tumors or cancer of the UTERINE CERVIX. Cancer of Cervix,Cancer of the Cervix,Cancer of the Uterine Cervix,Cervical Cancer,Cervical Neoplasms,Cervix Cancer,Cervix Neoplasms,Neoplasms, Cervical,Neoplasms, Cervix,Uterine Cervical Cancer,Cancer, Cervical,Cancer, Cervix,Cancer, Uterine Cervical,Cervical Cancer, Uterine,Cervical Cancers,Cervical Neoplasm,Cervical Neoplasm, Uterine,Cervix Neoplasm,Neoplasm, Cervix,Neoplasm, Uterine Cervical,Uterine Cervical Cancers,Uterine Cervical Neoplasm
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene

Related Publications

C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
October 1988, Journal of medical virology,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
June 1985, The American journal of pathology,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
February 1987, The Journal of general virology,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
September 1985, Virology,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
July 1992, Zhonghua fu chan ke za zhi,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
October 1997, Virus research,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
January 1996, Annals of clinical and laboratory science,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
January 1987, Haematology and blood transfusion,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
January 1988, Cancer research,
C C Baker, and W C Phelps, and V Lindgren, and M J Braun, and M A Gonda, and P M Howley
April 1986, International journal of cancer,
Copied contents to your clipboard!