Restriction enzyme map of herpesvirus of turkey DNA and its collinear relationship with Marek's disease virus DNA. 1987

T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama

The genome of herpesvirus of turkey (HVT) was shown to consist of long and short unique regions flanked by inverted repeats (J. Cebrian, Kaschka-Dietrich, C., Berthelot, N., and Sheldrick, P., 1982, Proc. Natl. Acad. Sci. USA 79, 555-558). In this paper we report the construction of the linkage map of HVT DNA for BamHI, HindIII, and PstI restriction endonucleases. The maps were constructed by hybridization of 19 cloned BamHI fragments of HVT DNA to electrophoretically separated digests of genomic DNA. Our results indicate that the terminal and internal inverted repeats (TRL and IRL) flanking the long unique sequences (UL) are spanned by BamHI-F fragment and a -F-related terminal fragment, respectively, whereas the terminal and internal inverted repeats (TRS and IRS) flanking the short unique sequences (US) are mostly contained in BamHI-A fragment. Both BamHI-A and -F showed a heterogeneity in size, suggesting the presence of amplification of certain sequences in the inverted repeats. We also report that the HVT genome is collinear with the genetically related Marek's disease virus (MDV) genome, as determined by hybridization of labeled cloned HVT DNA fragments with electrophoretically separated MDV DNA fragments.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008381 Herpesvirus 2, Gallid The type species of the genus MARDIVIRUS in the family HERPESVIRIDAE. It is the etiologic agent of MAREK DISEASE, infecting domestic fowl and wild birds. Fowl Paralysis Virus,Marek's Disease Herpesvirus 1,Marek's Disease Virus Serotype 1,Neurolymphomatosis Virus,Gallid Herpesvirus 2,Herpesvirus 2 (gamma), Gallid,Marek Disease Herpesvirus 1,Fowl Paralysis Viruses,Neurolymphomatosis Viruses,Paralysis Virus, Fowl,Paralysis Viruses, Fowl
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006564 Herpesviridae A family of enveloped, linear, double-stranded DNA viruses infecting a wide variety of animals. Subfamilies, based on biological characteristics, include: ALPHAHERPESVIRINAE; BETAHERPESVIRINAE; and GAMMAHERPESVIRINAE. Mouse Thymic Virus,Murid herpesvirus 3,Thymic Group Viruses,Herpesviruses,Mouse Thymic Viruses,Thymic Virus, Mouse,Thymic Viruses, Mouse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
July 1984, Journal of virology,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
September 1982, Gene,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
November 1992, Virology,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
February 1979, Virology,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
December 1973, Applied microbiology,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
March 1981, Journal of the National Cancer Institute,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
January 1979, Comparative immunology, microbiology and infectious diseases,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
March 1973, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
May 1975, Infection and immunity,
T Igarashi, and M Takahashi, and J Donovan, and J Jessip, and M Smith, and K Hirai, and A Tanaka, and M Nonoyama
January 1979, Medical microbiology and immunology,
Copied contents to your clipboard!