Binding and activation of rod outer segment phosphodiesterase and guanosine triphosphate binding protein by disc membranes: influence of reassociation method and divalent cations. 1987

J L Miller, and B J Litman, and E A Dratz

Attempts to optimize the recovery of light-stimulated phosphodiesterase activity following reassociation of the hypotonically extractable proteins derived from retinal rod segments with hypotonically stripped disc membranes lead to the following observations: the best reassociations were obtained by mixing proteins and stripped disc membranes under hypotonic conditions and slowly increasing the salt concentration; the binding of G-protein and phosphodiesterase to stripped disc membrane occurs in less than 5 minutes and the recovery of light-stimulated phosphodiesterase activation in response to subsaturating stimulus levels requires 2-3 h to plateau. Stripped disc membranes and proteins were reassociated in 'isotonic' buffers containing KCl/NaCl, KCl/NaCl plus Mg2+, or KCl/NaCl plus Ca2+. Large fractional rhodopsin bleaches produced nearly identical light-stimulated phosphodiesterase activities in each of these samples and in the control rod outer segment membranes. Rod outer segment membranes and reassociated stripped disc membrane samples containing divalent cations showed similar phosphodiesterase activities in response to low fractional rhodopsin bleaches (e.g. less than or equal to 0.1%), however, samples devoid of divalent cations during reassociation required rhodopsin bleaches up to 10-fold larger to elicit comparable phosphodiesterase activities. These results suggest that not all phosphodiesterase and/or G-protein molecules bound to the disc membrane surface are equivalent with regard to their efficiency of activation by bleached rhodopsin and that divalent cations can modulate the distribution of G-protein and/or phosphodiesterase between these populations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

J L Miller, and B J Litman, and E A Dratz
August 1984, Biochemistry,
J L Miller, and B J Litman, and E A Dratz
March 1992, Investigative ophthalmology & visual science,
J L Miller, and B J Litman, and E A Dratz
November 1982, Biochimica et biophysica acta,
J L Miller, and B J Litman, and E A Dratz
April 1985, Biochimica et biophysica acta,
J L Miller, and B J Litman, and E A Dratz
July 1983, The Journal of biological chemistry,
J L Miller, and B J Litman, and E A Dratz
April 1988, Journal of neuroscience research,
J L Miller, and B J Litman, and E A Dratz
September 1974, Investigative ophthalmology,
J L Miller, and B J Litman, and E A Dratz
May 1975, Biochemical and biophysical research communications,
J L Miller, and B J Litman, and E A Dratz
November 1976, FEBS letters,
Copied contents to your clipboard!