The human growth hormone gene locus: structure, evolution, and allelic variations. 1987

H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta

Genomic clones containing the closely related genes for human growth hormone (hGH) and chorionic somatomammotropin (hCS) were obtained from genomic bacteriophage lambda and cosmid libraries. The entire GH/CS chromosomal locus was reconstructed utilizing overlapping restriction fragments characterized from the isolated clones. The hGH/hCS locus contains two GH genes and three CS genes spanning 48 kb of DNA in the order: 5'-(hGH-1/hCS-5/hCS-1/hGH-2/hCS-2)-3', confirming analysis of cosmid clones obtained from a different human library (Barsh et al., 1983). To complete the characterization of the hCS genes, the nucleotide sequence of the hCS-5 gene was determined. Sequence analysis revealed a mutation of the 5' splice site at the exon II-intron B boundary, suggesting that the hCS-5 gene is a pseudogene. The nucleotide sequence of an allelic variant of the hCS-2 gene was determined and found to contain a single amino acid substitution and the deletion of a single codon. The hGH/hCS gene locus was further characterized by the localization of at least 27 Alu-type repetitive sequences and identification of three unique sequences in the vicinity of several hGH and hCS genes which define the probable breakpoints of the evolutionary duplication units. These data, combined with the nucleotide sequences of all five GH and CS genes, indicate that the hGH/hCS gene locus has evolved by duplication mechanisms. Evidence for the occurrence of at least one gene conversion event involving the hCS-1 gene precursor and the hCS-2 gene was found, indicating that the hGH/hCS gene locus has evolved by concerted mechanisms. The structure of the hCS genes is discussed in light of recent studies of CS genes from other mammalian species.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D010928 Placental Lactogen A polypeptide hormone of approximately 25 kDa that is produced by the SYNCYTIOTROPHOBLASTS of the PLACENTA, also known as chorionic somatomammotropin. It has both GROWTH HORMONE and PROLACTIN activities on growth, lactation, and luteal steroid production. In women, placental lactogen secretion begins soon after implantation and increases to 1 g or more a day in late pregnancy. Placental lactogen is also an insulin antagonist. Choriomammotropin,Chorionic Somatomammotropin, Human,Human Placental Lactogen,Lactogen Hormone, Placental,Mammotropic Hormone, Placental,Somatomammotropin, Chorionic,Choriomammotrophin,HCS (Human Chorionic Somatomammotropin),HPL (Human Placental Lactogen),PAPP-D,Placental Luteotropin,Pregnancy-Associated Plasma Protein D,Chorionic Somatomammotropin,Human Chorionic Somatomammotropin,Lactogen, Placental,Luteotropin, Placental,Placental Lactogen, Human,Placental Mammotropic Hormone,Pregnancy Associated Plasma Protein D
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005785 Gene Conversion The asymmetrical segregation of genes during replication which leads to the production of non-reciprocal recombinant strands and the apparent conversion of one allele into another. Thus, e.g., the meiotic products of an Aa individual may be AAAa or aaaA instead of AAaa, i.e., the A allele has been converted into the a allele or vice versa. Polar Recombination,Polaron,Conversion, Gene,Conversions, Gene,Gene Conversions,Polar Recombinations,Polarons,Recombination, Polar,Recombinations, Polar
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
June 1983, Nucleic acids research,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
November 1997, European journal of endocrinology,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
May 1989, Genomics,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
January 1983, Endocrine reviews,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
August 1981, Proceedings of the National Academy of Sciences of the United States of America,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
May 2010, PloS one,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
November 2017, Journal of cellular and molecular medicine,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
May 1996, Neuroreport,
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
February 1998, Molecular endocrinology (Baltimore, Md.),
H Hirt, and J Kimelman, and M J Birnbaum, and E Y Chen, and P H Seeburg, and N L Eberhardt, and A Barta
October 1990, Immunology today,
Copied contents to your clipboard!