Site-directed mutagenesis of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Anacystis nidulans. 1987

G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck

Using oligonucleotide-directed mutagenesis of the gene encoding the small subunit (rbcS) from Anacystis nidulans mutant enzymes have been generated with either Trp-54 of the small subunit replaced by a Phe residue, or with Trp-57 replaced by a Phe residue, whereas both Trp-54 and Trp-57 have been replaced by Phe residues in a double mutant. Trp-54 and Trp-57 are conserved in all amino acid sequences or the small subunit (S) that are known at present. The wild-type and mutant forms of Rubisco have all been purified to homogeneity. The wild-type enzyme, purified from Escherichia coli is indistinguishable from enzyme similarly purified from A. nidulans in subunit composition, subunit molecular mass and kinetic parameters (Vmax CO2 = 2.9 U/mg, Km CO2 = 155 microM). The single Trp mutants are indistinguishable from the wild-type enzyme by criteria (a) and (b). However, whereas, Km CO2 is also unchanged, Vmax CO2 is 2.5-fold smaller than the value for the wild-type enzyme for both mutants, demonstrating for the first time that single amino acid replacements in the non-catalytic small subunit influence the catalytic rate of the enzyme. The specificity factor tau, which measures the partitioning of the active site between the carboxylase and oxygenase reactions, was found to be invariant. Since tau is not affected by these mutations we conclude that S is an activating not a regulating subunit.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
June 1997, Biochemistry and molecular biology international,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
July 1992, Plant physiology,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
June 2003, Archives of biochemistry and biophysics,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
July 1993, Protein science : a publication of the Protein Society,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
August 1994, Photosynthesis research,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
July 1985, Plant molecular biology,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
January 1978, Basic life sciences,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
December 1994, Plant physiology,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
January 1983, Annual review of biochemistry,
G Voordouw, and P A De Vries, and W A Van den Berg, and E P De Clerck
January 1985, Planta,
Copied contents to your clipboard!