Comparison of norepinephrine- and veratrine-induced phosphoinositide hydrolysis in rat brain. 1987

K U Maier, and C O Rutledge

Stimulation of phosphoinositide hydrolysis by depolarization with veratrine was compared to that produced by stimulation of alpha-1 adrenoceptors by norepinephrine. The phosphoinositides in rat cerebral cortex were labeled with [myo-3H]inositol and the effects of the drugs on the formation of the following inositol phosphates were determined: inositol 1-phosphate (IP); inositol 1,4-bisphosphate (IP2); mixture of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate (IP3). Termination of the hydrolysis by trichloroacetic acid resulted in lower basal levels and more reproducible results than termination by water lysis or a chloroform-methanol mixture (CHCl3-MeOH). The amounts of IP and IP2 formed by a maximal concentration of veratrine were about one half of that formed by a maximal concentration of norepinephrine although the amount of IP3 formed after stimulation by veratrine was only about 10% of that produced by norepinephrine. The increase in IP was linear with time (30 min) for both norepinephrine and veratrine. Stimulation of IP2 and IP3 formation by veratrine reached a maximum at 5 min whereas that produced by norepinephrine continued to increase for 30 min. Blockade of voltage-dependent calcium channels with manganese produced nearly complete antagonism of the veratrine response while only partially antagonizing the norepinephrine response. Norepinephrine-induced IP2 formation was less sensitive to manganese than was formation of IP or IP3. These data suggest that either veratrine and norepinephrine cause hydrolysis of different pools of phosphoinositide or that the hydrolysis occurs by different mechanisms. The data also suggest that IP and IP2 may be produced directly from phosphatidylinositol and phosphatidylinositol 4-phosphate rather than solely as a metabolite of IP3.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

K U Maier, and C O Rutledge
November 1998, Methods and findings in experimental and clinical pharmacology,
K U Maier, and C O Rutledge
April 1994, Pharmacology, biochemistry, and behavior,
K U Maier, and C O Rutledge
December 1986, The Journal of pharmacology and experimental therapeutics,
K U Maier, and C O Rutledge
September 1987, Molecular pharmacology,
Copied contents to your clipboard!