Astrocyte-specific deletion of Kir6.1/K-ATP channel aggravates cerebral ischemia/reperfusion injury through endoplasmic reticulum stress in mice. 2019

Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China.

ATP-sensitive potassium (K-ATP) channels, coupling cell metabolism to cell membrane potential, are involved in brain diseases including stroke. Emerging evidence shows that astrocytes play important roles in the pathophysiology of cerebral ischemia. Kir6.1, a pore-forming subunit of K-ATP channel, is prominently expressed in astrocytes and participates in regulating its function. However, the exact role of astrocytic Kir6.1-containg K-ATP channel (Kir6.1/K-ATP) in ischemic stroke remains unclear. Here, we found that astrocytic Kir6.1 knockout (KO) mice exhibited larger infarct areas and more severe brain edema and neurological deficits in middle cerebral artery occlusion stroke model. Both activated gliosis and neuronal loss were aggravated in astrocytic Kir6.1 KO mice. Furthermore, the protein levels of pro-apoptotic protein Bcl-2 associated X (Bax) and active caspase-3 were up-regulated and the expression of anti-apoptotic protein Bcl-2 was down-regulated in astrocytic Kir6.1 KO mice. This is accompanied by enhanced endoplasmic reticulum stress (ER stress) responses in brain tissues and in astrocytes during ischemia/reperfusion (I/R) injury. Finally, inhibition of ER stress rescued astrocyte apoptosis induced by Kir6.1 deletion during I/R injury. Collectively, our findings reveal that astrocytic Kir6.1/K-ATP channel protects brain from cerebral ischemia/reperfusion injury through inhibiting ER stress and suggest that astrocytic Kir6.1/K-ATP channel is a promising therapeutic target for ischemic stroke.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D054086 KATP Channels Heteromultimers of Kir6 channels (the pore portion) and sulfonylurea receptor (the regulatory portion) which affect function of the HEART; PANCREATIC BETA CELLS; and KIDNEY COLLECTING DUCTS. KATP channel blockers include GLIBENCLAMIDE and mitiglinide whereas openers include CROMAKALIM and minoxidil sulfate. ATP-Sensitive Potassium Channel,ATP-Sensitive Potassium Channels,KATP Channel,ATP Sensitive Potassium Channel,ATP Sensitive Potassium Channels,Channel, ATP-Sensitive Potassium,Channel, KATP,Channels, ATP-Sensitive Potassium,Channels, KATP,Potassium Channel, ATP-Sensitive,Potassium Channels, ATP-Sensitive
D059865 Endoplasmic Reticulum Stress Various physiological or molecular disturbances that impair ENDOPLASMIC RETICULUM function. It triggers many responses, including UNFOLDED PROTEIN RESPONSE, which may lead to APOPTOSIS; and AUTOPHAGY. Stress, Endoplasmic Reticulum,Endoplasmic Reticulum Stresses,Reticulum Stress, Endoplasmic,Reticulum Stresses, Endoplasmic,Stresses, Endoplasmic Reticulum

Related Publications

Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
May 2022, Neurochemical research,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
August 2013, CNS neuroscience & therapeutics,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
July 2023, BMC molecular and cell biology,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
December 2015, Experimental and molecular pathology,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
January 2018, European journal of pharmacology,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
May 2015, Experimental and molecular pathology,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
August 2019, Sheng li xue bao : [Acta physiologica Sinica],
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
August 2015, Neural regeneration research,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
January 2021, Translational neuroscience,
Chong-Jin Zhong, and Miao-Miao Chen, and Ming Lu, and Jian-Hua Ding, and Ren-Hong Du, and Gang Hu
January 2022, Frontiers in cellular neuroscience,
Copied contents to your clipboard!