Loss of heterozygosity in human ductal breast tumors indicates a recessive mutation on chromosome 13. 1987

C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld

The genotypes at chromosomal loci defined by recombinant DNA probes revealing restriction fragment length polymorphisms were determined in constitutional and tumor tissue from 10 cases of ductal breast cancer: eight premenopausal females and two males. Somatic loss of constitutional heterozygosity was observed at loci on chromosome 13 in primary tumor tissue from three females and one male. In two cases, specific loss of heterozygosity at three distinct genetic loci along the length of the chromosome was observed. In another case, concurrent loss of alleles at loci on chromosomes 2, 13, 14, and 20 was detected, whereas a fourth case showed loss of heterozygosity for chromosomes 5 and 13. In each instance, the data were consistent with loss of one of the homologous chromosomes by mitotic nondisjunction. Analysis of loci on several other chromosomes showed retention of constitutional heterozygosity suggesting the relative specificity of the events. In contrast, similar analyses of other breast cancers, including comedocarcinoma, medullary carcinoma, and juvenile secretory carcinoma, showed no loss of alleles at loci on chromosome 13. These data indicate that the pathogenesis of ductal breast cancer may, in a substantial proportion of cases, involve unmasking of a recessive locus on chromosome 13 and suggest the involvement of such a locus in heritable forms of this disease.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002285 Carcinoma, Intraductal, Noninfiltrating A noninvasive (noninfiltrating) carcinoma of the breast characterized by a proliferation of malignant epithelial cells confined to the mammary ducts or lobules, without light-microscopy evidence of invasion through the basement membrane into the surrounding stroma. Carcinoma, Intraductal,DCIS,Ductal Carcinoma In Situ,Atypical Ductal Hyperplasia,Intraductal Carcinoma, Noninfiltrating,Atypical Ductal Hyperplasias,Carcinoma, Noninfiltrating Intraductal,Carcinomas, Intraductal,Carcinomas, Noninfiltrating Intraductal,Ductal Hyperplasia, Atypical,Ductal Hyperplasias, Atypical,Hyperplasia, Atypical Ductal,Hyperplasias, Atypical Ductal,Intraductal Carcinoma,Intraductal Carcinomas,Intraductal Carcinomas, Noninfiltrating,Noninfiltrating Intraductal Carcinoma,Noninfiltrating Intraductal Carcinomas
D002882 Chromosomes, Human, Pair 13 A specific pair of GROUP D CHROMOSOMES of the human chromosome classification. Chromosome 13
D005260 Female Females
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
September 1989, Proceedings of the National Academy of Sciences of the United States of America,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
October 1993, Cancer research,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
October 2012, Human pathology,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
August 1995, Genes, chromosomes & cancer,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
May 2008, Zhonghua bing li xue za zhi = Chinese journal of pathology,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
July 1998, The American journal of pathology,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
September 1995, Journal of the National Cancer Institute,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
January 1996, The Journal of heredity,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
October 1996, International journal of oncology,
C Lundberg, and L Skoog, and W K Cavenee, and M Nordenskjöld
May 1993, Lancet (London, England),
Copied contents to your clipboard!