Flow cytometric analysis of primary lung carcinomas and their lymph node metastases. 1987

M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss

Specimens of primary lung carcinomas and lymph node metastases from the same 18 patients were investigated by means of flow cytometry. The number of DNA stemlines, DNA indices, the proportion of diploid cells in the tumors and the distribution of the cell cycle phases were compared. In 10 patients DNA stemlines and DNA indices were identical in primary tumors and metastases. In two cases the DNA indices were doubled in metastases. In 6 cases the primary tumors contained two abnormal DNA stemlines and their metastases contained only one aneuploid stemline. Gross differences between primary tumors and lymph node metastases with regard to the proportion of cell cycle phases could not be found. The large variation between primary tumors and lymph node metastases with regard to DNA stemlines indicates that flow cytometric analysis of lymph nodes gives only limited information about the primary tumors.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008207 Lymphatic Metastasis Transfer of a neoplasm from its primary site to lymph nodes or to distant parts of the body by way of the lymphatic system. Lymph Node Metastasis,Lymph Node Metastases,Lymphatic Metastases,Metastasis, Lymph Node
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D000782 Aneuploidy The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1). Aneuploid,Aneuploid Cell,Aneuploid Cells,Aneuploidies,Aneuploids,Cell, Aneuploid,Cells, Aneuploid
D018288 Carcinoma, Small Cell An anaplastic, highly malignant, and usually bronchogenic carcinoma composed of small ovoid cells with scanty neoplasm. It is characterized by a dominant, deeply basophilic nucleus, and absent or indistinct nucleoli. (From Stedman, 25th ed; Holland et al., Cancer Medicine, 3d ed, p1286-7) Carcinoma, Oat Cell,Oat Cell Carcinoma,Small Cell Carcinoma,Carcinomas, Oat Cell,Carcinomas, Small Cell,Oat Cell Carcinomas,Small Cell Carcinomas

Related Publications

M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
January 1989, Neoplasma,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
July 1993, Gynecologic oncology,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
July 1994, International journal of oncology,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
October 2002, Pathology,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
August 1994, Pathology, research and practice,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
April 2003, Pathology,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
June 1997, American journal of obstetrics and gynecology,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
March 2000, International journal of molecular medicine,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
January 2003, Anticancer research,
M Volm, and J Mattern, and M Vogt-Schaden, and K Wayss
July 2007, Virchows Archiv : an international journal of pathology,
Copied contents to your clipboard!