The probabilistic nature of synaptic transmission at a mammalian excitatory central synapse. 1987

B Walmsley, and F R Edwards, and D J Tracey

The synaptic connection between single group I afferents and dorsal spinocerebellar tract (DSCT) neurons in the cat spinal cord has been studied in an attempt to gain insight into the mechanisms of excitatory synaptic transmission in the mammalian CNS. Fluctuations in the amplitude of single group I fiber EPSPs in DSCT neurons were examined using a numerical deconvolution procedure to reduce the effects of contaminating noise. In general, it was found that single fiber EPSPs fluctuate in peak amplitude between discrete levels separated by equal or quantal increments. Many previous studies have proposed simple binomial statistics as a general model of quantal synaptic transmission. In the present study we show that simple binomial statistics do not describe the fluctuations in amplitude of single group I fiber EPSPs in DSCT neurons. It is suggested that nonuniformities in the probability of transmitter release from release site to release site explain the failure of the binomial model to describe the EPSP fluctuation pattern at this synapse. Nonuniform quantal transmission is proposed as a more adequate description of excitatory synaptic transmission in the mammalian CNS.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

B Walmsley, and F R Edwards, and D J Tracey
May 2020, Physiological reports,
B Walmsley, and F R Edwards, and D J Tracey
February 1996, Journal of neurophysiology,
B Walmsley, and F R Edwards, and D J Tracey
January 1994, Advances in second messenger and phosphoprotein research,
B Walmsley, and F R Edwards, and D J Tracey
January 1990, Journal of neurophysiology,
B Walmsley, and F R Edwards, and D J Tracey
May 1966, Nature,
B Walmsley, and F R Edwards, and D J Tracey
January 1981, Advances in biochemical psychopharmacology,
B Walmsley, and F R Edwards, and D J Tracey
August 1992, British journal of pharmacology,
B Walmsley, and F R Edwards, and D J Tracey
September 1998, Journal of neurophysiology,
B Walmsley, and F R Edwards, and D J Tracey
August 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B Walmsley, and F R Edwards, and D J Tracey
November 2010, Neuron,
Copied contents to your clipboard!