Insights into Bidirectional Gene Expression Control Using the Canonical GAL1/GAL10 Promoter. 2018

Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA.

Despite advances made in understanding the effects of promoter structure on transcriptional activity, limited knowledge exists regarding the role played by chromatin architecture in transcription. Previous work hypothesized that transcription from the bidirectional GAL1/GAL10 promoter is controlled through looping of its UAS region around a nonstandard nucleosome. Here, by editing the GAL1/GAL10 promoter at high resolution, we provide insights into bidirectional expression control. We demonstrate that the first and fourth Gal4 binding sites within the UAS do not functionally contribute to promoter activation. Instead, these sites, along with nearby regulatory regions, contribute to the directional regulation of gene expression. Furthermore, Gal4 binding to the third binding site is critical for gene expression, while binding to the other three sites is not sufficient for transcriptional activation. Because the GAL1/GAL10 UAS can activate gene expression in many eukaryotes, the regulatory mechanism presented is expected to operate broadly across the eukaryotic clade.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005686 Galactokinase An enzyme that catalyzes reversibly the formation of galactose 1-phosphate and ADP from ATP and D-galactose. Galactosamine can also act as the acceptor. A deficiency of this enzyme results in GALACTOSEMIA. EC 2.7.1.6.
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
November 1984, Nucleic acids research,
Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
August 1984, Molecular and cellular biology,
Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
June 1987, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
January 1997, Yeast (Chichester, England),
Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
November 1984, Molecular and cellular biology,
Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
October 1984, Molecular and cellular biology,
Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
January 1993, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao,
Gregory L Elison, and Yuan Xue, and Ruijie Song, and Murat Acar
October 2011, Current microbiology,
Copied contents to your clipboard!