Azithromycin influences airway remodeling in asthma via the PI3K/Akt/MTOR/HIF-1α/VEGF pathway. 2018

X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
Department of Pediatrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.

Asthma is a respiratory disease that affects people of all walks of life, and is a hotspot of continuous research, with significant manpower and resources invested in its study. Airway remodeling is an important associated pathological change, and a mark of the irreversible damage produced by asthma. It involves compositional and functional changes in the cells of the airway walls, leading to reversible structural changes, and complicating treatment. Airway remodeling is mediated by different inflammatory pathways which have been targeted for treatment, with good results. However, given its complexity, systematic study of the pathogenesis of airway remodeling is still needed, and additional targeted therapies are necessary. Macrolide drugs, such as erythromycin, azithromycin, and clarithromycin, have antibacterial effects and also influence the cytokine secretion of macrophages and T-lymphocytes. They have direct effects on a variety of cytokines, inhibiting inflammation and reducing airway reactivity. In this study, we investigated the protective effect of azithromycin on airway remodeling through the phosphoinositol-3 kinase/Akt/mechanistic target of rapamycin kinase/hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. We observed that a long course of azithromycin could significantly reduce airway reactivity and ovalbulmin-induced pathological alterations in asthmatic mice. Gene expression analysis confirmed that HIF-1α and VEGF were significantly down-regulated following a long course of azithromycin administration.

UI MeSH Term Description Entries
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001249 Asthma A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL). Asthma, Bronchial,Bronchial Asthma,Asthmas
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D042461 Vascular Endothelial Growth Factor A The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced. Vascular Endothelial Growth Factor,Vascular Endothelial Growth Factor-A,GD-VEGF,Glioma-Derived Vascular Endothelial Cell Growth Factor,VEGF,VEGF-A,Vascular Permeability Factor,Vasculotropin,Glioma Derived Vascular Endothelial Cell Growth Factor,Permeability Factor, Vascular
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051795 Hypoxia-Inducible Factor 1, alpha Subunit Hypoxia-inducible factor 1, alpha subunit is a basic helix-loop-helix transcription factor that is regulated by OXYGEN availability and is targeted for degradation by VHL TUMOR SUPPRESSOR PROTEIN. Hypoxia Inducible Factor 1, alpha Subunit
D056151 Airway Remodeling The structural changes in the number, mass, size and/or composition of the airway tissues. Airway Remodelling,Asthmatic Airway Remodeling,Asthmatic Airway Remodelling,Asthmatic Airway Wall Remodeling,Asthmatic Airway Wall Remodelling,Small Airway Remodeling,Small Airway Remodelling,Airway Wall Remodelling,Airway Remodeling, Asthmatic,Airway Remodeling, Small,Airway Remodelings,Airway Remodelings, Asthmatic,Airway Remodelings, Small,Airway Remodelling, Asthmatic,Airway Remodelling, Small,Airway Remodellings,Airway Remodellings, Asthmatic,Airway Remodellings, Small,Airway Wall Remodellings,Asthmatic Airway Remodelings,Asthmatic Airway Remodellings,Remodeling, Airway,Remodeling, Asthmatic Airway,Remodeling, Small Airway,Remodelings, Airway,Remodelings, Asthmatic Airway,Remodelings, Small Airway,Remodelling, Airway,Remodelling, Airway Wall,Remodelling, Asthmatic Airway,Remodelling, Small Airway,Remodellings, Airway,Remodellings, Airway Wall,Remodellings, Asthmatic Airway,Remodellings, Small Airway,Small Airway Remodelings,Small Airway Remodellings,Wall Remodelling, Airway,Wall Remodellings, Airway
D058570 TOR Serine-Threonine Kinases A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity. TOR Kinase,TOR Kinases,TOR Serine-Threonine Kinase,Target of Rapamycin Protein,mTOR Serine-Threonine Kinase,mTOR Serine-Threonine Kinases,FK506 Binding Protein 12-Rapamycin Associated Protein 1,FKBP12-Rapamycin Associated Protein,FKBP12-Rapamycin Complex-Associated Protein,Mammalian Target of Rapamycin,Mechanistic Target of Rapamycin Protein,RAFT-1 Protein,Rapamycin Target Protein,Target of Rapamycin Proteins,mTOR Protein,FK506 Binding Protein 12 Rapamycin Associated Protein 1,FKBP12 Rapamycin Associated Protein,FKBP12 Rapamycin Complex Associated Protein,Kinase, TOR,Kinase, TOR Serine-Threonine,Kinase, mTOR Serine-Threonine,Kinases, TOR Serine-Threonine,Kinases, mTOR Serine-Threonine,Protein Target, Rapamycin,Protein, RAFT-1,Protein, mTOR,RAFT 1 Protein,Rapamycin Protein Target,Serine-Threonine Kinase, TOR,Serine-Threonine Kinase, mTOR,Serine-Threonine Kinases, TOR,Serine-Threonine Kinases, mTOR,TOR Serine Threonine Kinase,TOR Serine Threonine Kinases,mTOR Serine Threonine Kinase,mTOR Serine Threonine Kinases

Related Publications

X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
January 2021, Ear, nose, & throat journal,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
March 2018, Journal of experimental & clinical cancer research : CR,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
January 2021, Frontiers in pharmacology,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
August 2023, Journal of nanobiotechnology,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
September 2018, Biochemical and biophysical research communications,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
April 2016, Oncotarget,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
August 2012, Phytotherapy research : PTR,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
January 2022, Biochemical and biophysical research communications,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
May 2014, Experimental and therapeutic medicine,
X Zhao, and F Q Yu, and X J Huang, and B Y Xu, and Y L Li, and X Y Zhao, and H F Guo, and B Luan
January 2020, Experimental lung research,
Copied contents to your clipboard!