Sodium-potassium pump, ion fluxes, and cellular dehydration in sickle cell anemia. 1987

H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein

We studied the role of the sodium-potassium pump in erythrocytes of 12 patients with sickle cell anemia (SS). Ouabain-binding sites per cell and pump-mediated Rb/K uptake were significantly higher in SS patients than in white or black controls. Ouabain-resistant Rb/K influx was also greater than in normal controls or patients with sickle cell trait. Deoxygenation of SS erythrocytes increased ouabain-sensitive Rb/K influx without altering ouabain binding, presumably as the consequence of an increase in the passive influx of sodium. Deoxygenation increased mean corpuscular hemoglobin concentration (MCHC) by 5.5%, and studies of the density distribution of SS cells indicated an increase in highly dense fractions known to contain sickled erythrocytes. Ouabain prevented the rise in MCHC and reduced the percentage of dense cells. These findings indicate a magnified role for the sodium-potassium pump in the pathophysiology of SS erythrocytes and suggest that its inhibition might prove useful in therapy.

UI MeSH Term Description Entries
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D004909 Erythrocyte Indices ERYTHROCYTE size and HEMOGLOBIN content or concentration, usually derived from ERYTHROCYTE COUNT; BLOOD hemoglobin concentration; and HEMATOCRIT. The indices include the mean corpuscular volume (MCV), the mean corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). Erythrocyte Hemoglobin, Mean Cell,Erythrocyte Size Determination,Erythrocyte Volume, Mean Cell,Hemoglobin, Erythrocyte, Mean Cell,Mean Corpuscular Volume,Red Cell Indices,Erythrocyte Diameter,Erythrocyte Index,Erythrocyte Indexes,Erythrocyte Thickness,Mean Cell Hemoglobin Concentration,Mean Cell Volume,Mean Corpuscular Hemoglobin,Mean Corpuscular Hemoglobulin Concentration,Red Cell Distribution Width,Red Cell Index,Red Cell Indexes,Cell Volumes, Mean,Corpuscular Volumes, Mean,Determination, Erythrocyte Size,Determinations, Erythrocyte Size,Diameter, Erythrocyte,Diameters, Erythrocyte,Erythrocyte Diameters,Erythrocyte Size Determinations,Hemoglobin, Mean Corpuscular,Hemoglobins, Mean Corpuscular,Index, Erythrocyte,Index, Red Cell,Indexes, Erythrocyte,Indexes, Red Cell,Indices, Erythrocyte,Indices, Red Cell,Mean Cell Volumes,Mean Corpuscular Hemoglobins,Mean Corpuscular Volumes,Size Determination, Erythrocyte,Size Determinations, Erythrocyte,Thickness, Erythrocyte,Volume, Mean Cell,Volume, Mean Corpuscular,Volumes, Mean Cell,Volumes, Mean Corpuscular
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
July 1971, Clinica chimica acta; international journal of clinical chemistry,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
October 1978, The Journal of physiology,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
April 1952, The Journal of clinical investigation,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
July 1980, Physiological reviews,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
January 1991, Clinica chimica acta; international journal of clinical chemistry,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
January 1979, Nigerian medical journal : journal of the Nigeria Medical Association,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
February 1981, The New England journal of medicine,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
March 1982, The Journal of general physiology,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
February 1988, European journal of clinical investigation,
H Izumo, and S Lear, and M Williams, and R Rosa, and F H Epstein
April 1980, The Journal of physiology,
Copied contents to your clipboard!