Cloning of seven differently complementing DNA fragments with chl functions from Escherichia coli K12. 1987

J Reiss, and A Kleinhofs, and W Klingmüller

Seven genomic libraries of chromosomal Escherichia coli K12 wild-type DNA were constructed in plasmid vectors. These were used to transform chl insertion mutants. Selection for growth on nitrate under anaerobic conditions yielded four plasmids which complemented mutants of the chlA, B, E and G types. The chromosomal fragments were mapped with restriction enzymes and subcloned. Three complementation groups were observed among the chlA mutants and two among the chlE mutants. The established complementation groups plus mutants of the chlD type represent eight distinct functions, which are all believed to be required for the molybdenum cofactor activity in the reduction of nitrate to nitrite by E. coli.

UI MeSH Term Description Entries
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D002704 Chlorates Inorganic salts of chloric acid that contain the ClO3- ion. Chlorate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

J Reiss, and A Kleinhofs, and W Klingmüller
November 1979, Molecular & general genetics : MGG,
J Reiss, and A Kleinhofs, and W Klingmüller
January 1979, Cold Spring Harbor symposia on quantitative biology,
J Reiss, and A Kleinhofs, and W Klingmüller
December 1994, Microbiology (Reading, England),
J Reiss, and A Kleinhofs, and W Klingmüller
February 1980, Molecular & general genetics : MGG,
J Reiss, and A Kleinhofs, and W Klingmüller
November 1990, FEMS microbiology letters,
J Reiss, and A Kleinhofs, and W Klingmüller
October 2016, Science China. Life sciences,
J Reiss, and A Kleinhofs, and W Klingmüller
September 1974, Annales de microbiologie,
J Reiss, and A Kleinhofs, and W Klingmüller
January 1969, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
J Reiss, and A Kleinhofs, and W Klingmüller
April 1967, Biochimica et biophysica acta,
J Reiss, and A Kleinhofs, and W Klingmüller
December 1983, Nucleic acids research,
Copied contents to your clipboard!