| D008297 |
Male |
|
Males |
|
| D009693 |
Nucleic Acid Hybridization |
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) |
Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations |
|
| D004247 |
DNA |
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). |
DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA |
|
| D004262 |
DNA Restriction Enzymes |
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. |
Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA |
|
| D005260 |
Female |
|
Females |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D012732 |
Sex Determination Analysis |
Validation of the SEX of an individual by inspection of the GONADS and/or by genetic tests. |
Sex Determination Techniques,Sex Determination Technics,Analyses, Sex Determination,Analysis, Sex Determination,Sex Determination Analyses,Sex Determination Technic,Sex Determination Technique,Technic, Sex Determination,Technics, Sex Determination,Technique, Sex Determination,Techniques, Sex Determination |
|
| D014998 |
Y Chromosome |
The male sex chromosome, being the differential sex chromosome carried by half the male gametes and none of the female gametes in humans and in some other male-heterogametic species in which the homologue of the X chromosome has been retained. |
Chromosome, Y,Chromosomes, Y,Y Chromosomes |
|
| D015246 |
Deoxyribonuclease EcoRI |
One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence G/AATTC at the slash. EcoRI is from E coliRY13. Several isoschizomers have been identified. EC 3.1.21.-. |
DNA Restriction Enzyme EcoRI,Deoxyribonuclease SsoI,Endonuclease EcoRI,Eco RI,Eco-RI,EcoRI Endonuclease,Endodeoxyribonuclease ECoRI,Endodeoxyribonuclease HsaI,Endonuclease Eco159I,Endonuclease Eco82I,Endonuclease RsrI,Endonuclease SsoI,HsaI Endonuclease,Restriction Endonuclease RsrI |
|