A genetic locus essential for formate-dependent growth of Bradyrhizobium japonicum. 1987

C R McClung, and B K Chelm

A genetic locus essential for the formate-dependent growth of Bradyrhizobium japonicum was isolated by complementation of ethyl methanesulfonate-induced mutants with a cosmid gene library of B. japonicum DNA. Three related cosmids containing 18.7 kilobase pairs of B. japonicum DNA in common were identified as being able to restore formate-dependent growth capability to mutants lacking either ribulosebisphosphate carboxylase or both ribulosebisphosphate carboxylase and phosphoribulokinase activities. To further localize the complementing gene(s), a series of four deletions spanning a total of 16.1 kilobase pairs were introduced into the B. japonicum chromosome. Each resulting deletion mutant lacked formate dehydrogenase activity and lacked ribulosebisphosphate carboxylase activity and immunologically detectable protein. Three of the four also lacked phosphoribulokinase activity. Two other mutants in which the deletion-bearing recombinant plasmid had integrated into the chromosome also lacked ribulosebisphosphate carboxylase activity and protein and phosphoribulokinase activities. The genetic locus defined by these mutants could contain the structural genes for these enzymes or a regulatory gene(s) controlling their expression or both.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005560 Formate Dehydrogenases Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2. Formate Dehydrogenase,Formate Hydrogenlyases,NAD-Formate Dehydrogenase,Dehydrogenase, Formate,Dehydrogenase, NAD-Formate,Dehydrogenases, Formate,Hydrogenlyases, Formate,NAD Formate Dehydrogenase
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

C R McClung, and B K Chelm
April 2010, Applied and environmental microbiology,
C R McClung, and B K Chelm
January 2010, Microbes and environments,
C R McClung, and B K Chelm
January 1994, World journal of microbiology & biotechnology,
C R McClung, and B K Chelm
April 1998, Biochimica et biophysica acta,
C R McClung, and B K Chelm
January 1991, Molecular microbiology,
C R McClung, and B K Chelm
December 2000, Applied and environmental microbiology,
C R McClung, and B K Chelm
April 2000, Archives of biochemistry and biophysics,
Copied contents to your clipboard!