Aminoglycoside antibiotics preferentially increase permeability in phosphoinositide-containing membranes: a study with carboxyfluorescein in liposomes. 1987

S Au, and N D Weiner, and J Schacht

The rate of release from multilamellar liposomes of the fluorescent probe carboxyfluorescein was determined as a measure of membrane permeability. Liposomes of phosphatidylcholine and different anionic phospholipids were incubated with low (1 microM) and high (3 mM) concentrations of calcium in the absence or presence of aminoglycoside antibiotics. The leakage of carboxyfluorescein into the medium was not caused by liposomal fusion as no vesicle fusion was observed in experiments with terbium and dipicolinic acid-loaded liposomes. The basal rate of carboxyfluorescein release (in the absence or presence of 1 microM calcium) from all types of liposomes ranged from 0.1 to 0.3% of trapped carboxyfluorescein per hour. The presence of 3 mM calcium caused the greatest increase in the rate of carboxyfluorescein release (about 9-fold) in liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP2) whereas liposomes containing the other anionic phospholipids (phosphatidylserine, phosphatidylinositol and phosphatidylinositol 4-phosphate) showed an approximate 5-fold increase. In the presence of 1 microM calcium, the aminoglycosides neomycin and gentamicin also increased the rate of carboxyfluorescein release, with PIP2-containing liposomes showing a 3-5-times greater response than the other liposomes, releasing up to 4.6% of trapped carboxyfluorescein per hour. This drug-induced release was dose-dependent and antagonized by calcium. In the presence of 3 mM calcium, 0.1 mM gentamicin or neomycin were ineffective while the drug at 1 mM affected carboxyfluorescein release from PIP2-liposomes only. The aminoglycoside antibiotics, neomycin, gentamicin, tobramycin, kanamycin, amikacin, netilmicin, as well as neamine and spectinomycin (all at 0.1 mM) showed a graded effect on the rate of carboxyfluorescein release from PIP2-containing vesicles in the presence of 0.1 mM calcium. The magnitude of the effect correlated well with the ototoxicity of the drugs previously determined directly in cochlear perfusions in the guinea pig. The study demonstrates that aminoglycoside antibiotics are capable of altering membrane permeabilities and that this effect is most pronounced if PIP2 is present in the bilayers. The excellent correlation between this membrane action and the in-situ toxicity of the drugs further establishes the specific role of PIP2 in the molecular mechanism of aminoglycoside-induced hearing loss. Moreover, it confirms the usefulness of such physicochemical models for the screening and prediction of aminoglycoside toxicity.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D009355 Neomycin Aminoglycoside antibiotic complex produced by Streptomyces fradiae. It is composed of neomycins A, B, and C, and acts by inhibiting translation during protein synthesis. Fradiomycin Sulfate,Neomycin Palmitate,Neomycin Sulfate
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005839 Gentamicins A complex of closely related aminoglycosides obtained from MICROMONOSPORA purpurea and related species. They are broad-spectrum antibiotics, but may cause ear and kidney damage. They act to inhibit PROTEIN BIOSYNTHESIS. Gentamicin Sulfate (USP),Gentamycin,G-Myticin,Garamycin,Gentacycol,Gentamicin,Gentamicin Sulfate,Gentamycins,Gentavet,Genticin,G Myticin,GMyticin,Sulfate, Gentamicin
D000617 Aminoglycosides Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS. Aminoglycoside
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

S Au, and N D Weiner, and J Schacht
October 1993, European journal of pharmacology,
S Au, and N D Weiner, and J Schacht
May 1991, Biochemical pharmacology,
S Au, and N D Weiner, and J Schacht
November 1976, Antibiotiki,
S Au, and N D Weiner, and J Schacht
May 1979, The Journal of antibiotics,
S Au, and N D Weiner, and J Schacht
January 1987, Molecular biology reports,
S Au, and N D Weiner, and J Schacht
December 2006, Natural product reports,
S Au, and N D Weiner, and J Schacht
May 1996, Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic],
S Au, and N D Weiner, and J Schacht
January 1988, Molecular biology reports,
Copied contents to your clipboard!