Effects of phencyclidine, SKF 10,047 and related psychotomimetic agents on N-methyl-D-aspartate receptor mediated synaptic responses in rat hippocampal slices. 1987

E J Coan, and G L Collingridge

The effects of representative drugs from three classes of psychotomimetic compounds (arylcyclohexylamines, benzomorphan opioids and dioxolanes) have been examined on synaptic transmission at an identified monosynaptic pathway in rat hippocampal slices. The compounds tested were phencyclidine (PCP) and ketamine, the racemate and isomers of SKF 10,047 (N-allylnormetazocine), and the isomers of dioxadrol (dexoxadrol and levoxadrol). In the absence of added magnesium ions (Mg) in the perfusion medium low frequency stimulation of the Schaffer collateral-commissural pathway evoked a burst of population spikes in the CA1 cell body region. The secondary components of this response could be abolished by the selective N-methyl-D-aspartate (NMDA) antagonist D-2-amino-5-phosphonovalerate (APV). PCP (1 microM) or ketamine (10 microM) selectively blocked the secondary components of the synaptic response. The effect of PCP was neither mimicked nor prevented by hexamethonium and atropine, phentolamine and propranolol, or clonidine and was therefore unlikely to involve cholinergic or adrenergic neurotransmitter systems. The sigma opiate, (+/-)-SKF 10,047 (10 microM) also abolished selectively the secondary components of the synaptic response. There was no apparent difference between the potency of the stereoisomers of this compound. The action of (+/-)-SKF 10,047 was not affected by either naloxone or haloperidol, indicating that this effect did not involve opioid receptors or the haloperidol-sensitive sigma site. Dexoxadrol (10 microM), but not levoxadrol (10 microM), also selectively blocked the secondary components of the synaptic response. It is concluded that these psychotomimetic agents can block an NMDA receptor-mediated component of synaptic transmission in the hippocampus and that this effect is mediated by a specific PCP/sigma site.

UI MeSH Term Description Entries
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009467 Neuromuscular Depolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation. Depolarizing Muscle Relaxants,Muscle Relaxants, Depolarizing,Depolarizing Blockers,Agents, Neuromuscular Depolarizing,Blockers, Depolarizing,Depolarizing Agents, Neuromuscular,Relaxants, Depolarizing Muscle
D010620 Phenazocine An opioid analgesic with actions and uses similar to MORPHINE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1095) Phenbenzorphan,Phenethylazocine,Narphen,Phenazocine Hydrobromide,Hydrobromide, Phenazocine
D010622 Phencyclidine A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust. 1-(1-Phenylcyclohexyl)piperidine,Angel Dust,CL-395,GP-121,Phencyclidine Hydrobromide,Phencyclidine Hydrochloride,Sernyl,Serylan,CL 395,CL395,Dust, Angel,GP 121,GP121
D010880 Piperidines A family of hexahydropyridines.
D004148 Dioxolanes
D006213 Hallucinogens Drugs capable of inducing illusions, hallucinations, delusions, paranoid ideations, and other alterations of mood and thinking. Despite the name, the feature that distinguishes these agents from other classes of drugs is their capacity to induce states of altered perception, thought, and feeling that are not experienced otherwise. Hallucinogen,Hallucinogenic Agent,Hallucinogenic Drug,Hallucinogenic Substance,Psychedelic,Psychedelic Agent,Psychedelic Agents,Psychotomimetic Agent,Psychotomimetic Agents,Hallucinogenic Agents,Hallucinogenic Drugs,Hallucinogenic Substances,Psychedelics,Agent, Hallucinogenic,Agent, Psychedelic,Agent, Psychotomimetic,Agents, Hallucinogenic,Agents, Psychedelic,Agents, Psychotomimetic,Drug, Hallucinogenic,Drugs, Hallucinogenic,Substance, Hallucinogenic,Substances, Hallucinogenic

Related Publications

E J Coan, and G L Collingridge
January 1990, Synapse (New York, N.Y.),
E J Coan, and G L Collingridge
June 2009, The European journal of neuroscience,
E J Coan, and G L Collingridge
August 2004, Biochemical and biophysical research communications,
E J Coan, and G L Collingridge
May 1988, The Journal of physiology,
Copied contents to your clipboard!