Ten families with fragile X syndrome: linkage relationships with four DNA probes from distal Xq. 1987

J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie

We present clinical, cytogenetic, and linkage data of four DNA probes from the terminal long arm of the X chromosome in ten new families with fragile X syndrome. A prior/posterior method of multipoint linkage analysis is employed to combine these results with published data to refine the linkage map of terminal Xq. Ten possible probe/disease orderings were tested. The order with the greatest posterior probability (0.78) of the five loci is 52a-F9-fragile X gene-DX13-St14, although the order with reversal of the positions of 52a and F9 has a posterior probability 0.15. The mean estimates of the distances between the probes and the fragile X gene are 38 cM and 33 cM for the proximal probes 52a and F9, and 8 cM and 12 cM for the distal probes DX13 and St14. Although the current method of choice in the prenatal diagnosis and carrier detection of the fragile X syndrome remains detailed cytogenetic analysis, consideration is given to the potential role of these DNA probes, both singly and in pairs.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008297 Male Males
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005260 Female Females
D005600 Fragile X Syndrome A condition characterized genotypically by mutation of the distal end of the long arm of the X chromosome (at gene loci FRAXA or FRAXE) and phenotypically by cognitive impairment, hyperactivity, SEIZURES, language delay, and enlargement of the ears, head, and testes. INTELLECTUAL DISABILITY occurs in nearly all males and roughly 50% of females with the full mutation of FRAXA. (From Menkes, Textbook of Child Neurology, 5th ed, p226) FRAXA Syndrome,FRAXE Syndrome,Martin-Bell Syndrome,Fra(X) Syndrome,Fragile X Mental Retardation Syndrome,Fragile X-F Mental Retardation Syndrome,Mar (X) Syndrome,Marker X Syndrome,Mental Retardation, X-Linked, Associated With Fragile Site Fraxe,Mental Retardation, X-Linked, Associated With Marxq28,X-Linked Mental Retardation and Macroorchidism,FRAXA Syndromes,FRAXE Syndromes,Fragile X Syndromes,Marker X Syndromes,Martin Bell Syndrome,Syndrome, FRAXA,Syndrome, FRAXE,Syndrome, Fragile X,Syndrome, Marker X,Syndrome, Martin-Bell,Syndromes, FRAXA,Syndromes, FRAXE,Syndromes, Fragile X,Syndromes, Marker X,X Linked Mental Retardation and Macroorchidism

Related Publications

J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
January 1991, American journal of medical genetics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
January 1987, Journal of medical genetics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
January 1991, American journal of medical genetics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
January 1992, American journal of medical genetics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
July 1988, Human genetics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
January 1990, Birth defects original article series,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
October 1986, Clinical genetics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
January 1991, American journal of medical genetics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
July 1991, Genomics,
J A Buchanan, and K E Buckton, and C M Gosden, and M S Newton, and J F Clayton, and S Christie, and N Hastie
January 1982, Revista chilena de pediatria,
Copied contents to your clipboard!