The gene and the primary structure of ornithine decarboxylase from Saccharomyces cerevisiae. 1987

W A Fonzi, and P S Sypherd

The nucleotide sequence was determined for a 3-kilobase genomic fragment containing the ornithine decarboxylase gene of Saccharomyces cerevisiae. The fragment contained two open reading frames. Gene disruption localized the ornithine decarboxylase gene to a 1398-nucleotide open reading frame. Transcription of the yeast gene initiated at several sites 171 to 211 nucleotides 5' of the translational start site. The 3' end of the transcript extended approximately 300 nucleotides beyond the end of the ornithine decarboxylase coding region and contained two copies of the yeast ARS core sequence. Translation of the ornithine decarboxylase gene appeared to initiate at the first AUG condon of the open reading frame based upon translational fusions with the Escherichia coli beta-galactosidase gene. Since no introns were apparent, the 1398-nucleotide open reading frame was predicted to encode a 466-amino acid protein with a calculated Mr = 52,369. The deduced protein differed significantly in size from previous reports on yeast ornithine decarboxylase, but was very similar in size to mammalian ornithine decarboxylase. When the predicted amino acid sequence of yeast ornithine decarboxylase was compared with that of the mouse enzyme, alignment of the sequences revealed that 40% of the amino acid residues were identical. Chou-Fasman predictions of the secondary structure of the two enzymes indicated that secondary structure was also highly conserved.

UI MeSH Term Description Entries
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

W A Fonzi, and P S Sypherd
January 1983, Methods in enzymology,
W A Fonzi, and P S Sypherd
December 1981, The Journal of biological chemistry,
W A Fonzi, and P S Sypherd
June 1980, Journal of bacteriology,
W A Fonzi, and P S Sypherd
September 1986, The Journal of biological chemistry,
W A Fonzi, and P S Sypherd
March 1980, Journal of bacteriology,
W A Fonzi, and P S Sypherd
February 1984, Molecular and cellular biology,
W A Fonzi, and P S Sypherd
September 1985, Yeast (Chichester, England),
W A Fonzi, and P S Sypherd
April 2002, Biochemical and biophysical research communications,
Copied contents to your clipboard!