Effects of calcium ionophore A23187 and calcium antagonists on 32Pi incorporation into polyphosphoinositides of rat cortical synaptosomes. 1987

J W Wei, and E K Wang

The role of Ca2+ on 32Pi incorporation into polyphosphoinositides (PPI) of rat cortical synaptosomes was studied. Stimulation of muscarinic receptor by carbachol (1 mM) resulted in a decrease in 32Pi incorporation into phosphatidylinositol-4,5-bisphophaphate (TPI) and phosphatidylinositol-4-phosphate (DPI), and an increase in 32Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA), whereas no significant effect on other membrane phospholipids was found. This response could be blocked by atropine (1 microM). The stimulatory effect of carbachol required Ca2+ in the medium; the presence of 0.5 mM EGTA blocked the effect of carbachol on PPI turnover completely. Calcium ionophore A23187, at 1 microM, had a similar effect on PPI turnover by carbachol (1 mM). At higher concentrations (10-100 microM) of A23187, the PPI turnover rate was much enhanced. Depolarization of the membrane by high potassium (60 mM) in the presence of calcium resulted in an enhanced PPI turnover, which was similar to the results of the carbachol (1 mM) effect but to a lesser extent. Calcium antagonists, diltiazem and trifluoperazine, at 10 microM could block the carbachol effect on 32Pi incorporation into PPI in this preparation. Our results suggest that the enhancement of PPI turnover in rat cortical synaptosomes by carbachol, calcium ionophore or high potassium requires Ca2+, and it can be blocked by compounds which interfere with the availability of this ion, such as EGTA or calcium antagonists.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004110 Diltiazem A benzothiazepine derivative with vasodilating action due to its antagonism of the actions of CALCIUM ion on membrane functions. Aldizem,CRD-401,Cardil,Cardizem,Dilacor,Dilacor XR,Dilren,Diltiazem Hydrochloride,Diltiazem Malate,Dilzem,Tiazac,CRD 401,CRD401
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic

Related Publications

J W Wei, and E K Wang
January 1989, Radiation and environmental biophysics,
J W Wei, and E K Wang
January 1987, Neurotoxicology and teratology,
J W Wei, and E K Wang
October 1979, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!