Rapid identification of hybridization probes for chromosomal walking. 1987

M D Howell, and J Resner, and R K Austin, and M F Kagnoff

The presence of repeated elements in restriction fragments used as hybridization probes for chromosomal walking poses a major obstacle to the success of this gene-cloning strategy. This report describes a simple and rapid means of identifying restriction fragments devoid of repeated sequences and therefore useful as hybridization probes for chromosomal walking. Restriction fragments derived from a genomic DNA clone are Southern blotted and hybridized to nick-translated total genomic [32P]DNA. Fragments of the genomic clone that contain high abundance sequences (i.e., repeated elements) hybridize strongly to their nick-translated counterparts, which, due to their high copy number, comprise a significant proportion of the total genomic DNA probe. Conversely, fragments containing single-copy or low-abundance sequences do not hybridize, as their nick-translated counterparts are poorly represented in the total genomic DNA probe. These latter fragments, by virtue of their low-abundance sequences, are well suited as probes for chromosomal walking. Ensuring the absence of repeated elements in restriction fragments prior to their purification and utilization as chromosomal walking probes results in marked savings of time, effort and materials.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA

Related Publications

M D Howell, and J Resner, and R K Austin, and M F Kagnoff
May 1988, Applied and environmental microbiology,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
July 1987, Journal of clinical microbiology,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
June 1987, Journal of general microbiology,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
June 2006, Journal of medical microbiology,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
June 1989, Analytical biochemistry,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
February 2007, Molecular and cellular probes,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
August 2009, The Analyst,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
February 2005, Molecular and cellular probes,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
December 1997, Journal of clinical microbiology,
M D Howell, and J Resner, and R K Austin, and M F Kagnoff
February 2018, Molecular and cellular probes,
Copied contents to your clipboard!