Amino acids at the site of V kappa-J kappa recombination not encoded by germline sequences. 1987

M Heller, and J D Owens, and J F Mushinski, and S Rudikoff

Murine V kappa-J kappa recombination is characterized by a maintenance of size at the site of recombination and the use of nucleic acids found only in germline sequences. This is in contrast to heavy chain VH-D-JH assembly where random nucleotides are added at the recombination sites to produce considerable size variation, even though the heptamer/nonomer recombination sequences are identical in both kappa and heavy chain genes. We have examined the origin of an unusual amino acid, Ile, found at the site of V kappa-J kappa recombination in antigalactan antibodies, by sequence analysis of the corresponding rearranged and germline genes. Results indicate that the Ile codon can be generated by use of a single nucleotide 3' of the V kappa segment in combination with the second and third nucleotides of the first codon of J kappa 5 or J kappa 4. However, several antigalactan antibodies express Ile in combination with J kappa 2. An Ile codon cannot be generated by recombination in any reading frame between germline V kappa and J kappa 2 segments. These results suggest that the origin of the Ile codon in lines using J kappa 2 may represent a novel even in murine light chain assembly, possibly similar to the de novo addition of nucleotides observed in heavy chain gene recombination.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007144 Immunoglobulin J-Chains A 15 kDa "joining" peptide that forms one of the linkages between monomers of IMMUNOGLOBULIN A or IMMUNOGLOBULIN M in the formation of polymeric immunoglobulins. There is one J chain per one IgA dimer or one IgM pentamer. It is also involved in binding the polymeric immunoglobulins to POLYMERIC IMMUNOGLOBULIN RECEPTOR which is necessary for their transcytosis to the lumen. It is distinguished from the IMMUNOGLOBULIN JOINING REGION which is part of the IMMUNOGLOBULIN VARIABLE REGION of the immunoglobulin light and heavy chains. Ig J Chains,J-Chains, Immunoglobulin,Ig J-Peptide,Immunoglobulin J Polypeptide,Immunoglobulin J-Peptide,Chains, Ig J,Ig J Peptide,Immunoglobulin J Chains,Immunoglobulin J Peptide,J Chains, Ig,J Chains, Immunoglobulin,J Polypeptide, Immunoglobulin,J-Peptide, Ig,J-Peptide, Immunoglobulin,Polypeptide, Immunoglobulin J
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D007532 Isoleucine An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. Alloisoleucine,Isoleucine, L-Isomer,L-Isoleucine,Isoleucine, L Isomer,L-Isomer Isoleucine
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA

Related Publications

M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
November 1984, Journal of immunology (Baltimore, Md. : 1950),
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
July 2000, Proceedings of the National Academy of Sciences of the United States of America,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
October 2003, The EMBO journal,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
June 1992, European journal of immunology,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
May 2005, The Journal of biological chemistry,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
January 1981, Journal of molecular and applied genetics,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
January 1983, The EMBO journal,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
November 2022, Nucleic acids research,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
June 2000, Nature,
M Heller, and J D Owens, and J F Mushinski, and S Rudikoff
August 2000, Molecules and cells,
Copied contents to your clipboard!