RIVET: comprehensive graphic user interface for analysis and exploration of genome-wide translatomics data. 2018

Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
Department of Microbiology, New York University School of Medicine, New York, 10016, USA.

BACKGROUND Translatomics data, particularly genome-wide ribosome profiling and polysome profiling, provide multiple levels of gene regulatory information that can be used to assess general transcription and translation, as well translational efficiency. The increasing popularity of these techniques has resulted in multiple algorithms to detect translational regulation, typically distributed in the form of command line tools that require a basic level of programming ability. Additionally, due to the static nature of current software, dynamic transcriptional and translational comparative analysis cannot be adequately achieved. In order to streamline hypothesis generation, investigators must have the ability to manipulate and interact with their data in real-time. RESULTS To address the lack of integration in current software, we introduce RIVET, Ribosomal Investigation and Visualization to Evaluate Translation, an R shiny based graphical user interface for translatomics data exploration and differential analysis. RIVET can analyze either microarray or RNA sequencing data from polysome profiling and ribosome profiling experiments. RIVET provides multiple choices for statistical analysis as well as integration of transcription, translation, and translational efficiency data analytics and the ability to visualize all results dynamically. CONCLUSIONS RIVET is a user-friendly tool designed for bench scientists with little to no programming background. RIVET facilitates the data analysis of translatomics data allowing for dynamic generation of results based on user-defined inputs and publication ready visualization. We expect RIVET will allow for scientists to efficiently make more comprehensive data observations that will lead to more robust hypothesis regarding translational regulation.

UI MeSH Term Description Entries
D003196 Computer Graphics The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation. Computer Graphic,Graphic, Computer,Graphics, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014584 User-Computer Interface The portion of an interactive computer program that issues messages to and receives commands from a user. Interface, User Computer,Virtual Systems,User Computer Interface,Interface, User-Computer,Interfaces, User Computer,Interfaces, User-Computer,System, Virtual,Systems, Virtual,User Computer Interfaces,User-Computer Interfaces,Virtual System
D015894 Genome, Human The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs. Human Genome,Genomes, Human,Human Genomes
D059014 High-Throughput Nucleotide Sequencing Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc. High-Throughput Sequencing,Illumina Sequencing,Ion Proton Sequencing,Ion Torrent Sequencing,Next-Generation Sequencing,Deep Sequencing,High-Throughput DNA Sequencing,High-Throughput RNA Sequencing,Massively-Parallel Sequencing,Pyrosequencing,DNA Sequencing, High-Throughput,High Throughput DNA Sequencing,High Throughput Nucleotide Sequencing,High Throughput RNA Sequencing,High Throughput Sequencing,Massively Parallel Sequencing,Next Generation Sequencing,Nucleotide Sequencing, High-Throughput,RNA Sequencing, High-Throughput,Sequencing, Deep,Sequencing, High-Throughput,Sequencing, High-Throughput DNA,Sequencing, High-Throughput Nucleotide,Sequencing, High-Throughput RNA,Sequencing, Illumina,Sequencing, Ion Proton,Sequencing, Ion Torrent,Sequencing, Massively-Parallel,Sequencing, Next-Generation
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational

Related Publications

Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
January 2012, Journal of neuroscience methods,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
December 2009, BMC proceedings,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
March 2014, BMC genomics,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
October 2009, BMC bioinformatics,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
January 1976, Methods of information in medicine. Supplement,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
February 1991, Journal of medical systems,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
March 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
August 2023, BMC bioinformatics,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
January 1998, Studies in health technology and informatics,
Amanda W Ernlund, and Robert J Schneider, and Kelly V Ruggles
August 2023, Soft matter,
Copied contents to your clipboard!