Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus. 1986

M Chesler

1. The regulation of intracellular pH (pHi) in lamprey reticulospinal neurones was investigated with pH-sensitive micro-electrodes based on a neutral carrier liquid membrane. Experiments were performed using an in vitro brain-stem preparation. 2. In HEPES-buffered solutions, extracellular pH (pHo) was consistently more acidic than the pH of the bathing solution (pHb). In HCO3(-)-buffered solutions, the brain was also relatively acidic, but the brain pH gradient was smaller. 3. In HEPES- and HCO3(-)-buffered solutions, mean pHi was 7.40-7.50. This range was too high to be explained by a passive distribution of H+, OH- or HCO3-. 4. In nominally HCO3(-)-free, HEPES-buffered solution, cells were acid loaded by addition and subsequent withdrawal of NH4+ from the superfusate. pHi recovered from acid loading by an energy-dependent process in 10-20 min. Recovery from acid loading in HEPES-buffered solutions was blocked by exposure to amiloride. 5. Removal of extracellular Na+ caused a slow, accelerating fall of pHi. Return of Na+ to the bath caused an immediate reversal of this acidification, followed by a slow recovery of pHi. Measurement with Na+-sensitive micro-electrodes during acid loading showed a rapid rise in the intracellular Na+ activity [( Na+]i). 6. Following acid loading, transition from HEPES- to HCO3(-)-buffered solutions caused an increase in the acid extrusion rate of at least 48%. The effect of these solution changes was dependent on pHo. After blocking pHi recovery with amiloride, transition from HEPES- to HCO3(-)-buffered Ringer plus amiloride produced a slow recovery of pHi. 7. Recovery from acid loading in HCO3(-)-buffered solutions was inhibited 65% by the anion transport blocker DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid). Recovery from acid loading after incubation in Cl(-)-free solution was slower than recovery after replenishment of Cl-. 8. It is concluded that in HCO3(-)-free solutions, pHi regulation is accomplished by a Na-H exchange mechanism. In the presence of extracellular HCO3- an additional mechanism can operate to extrude intracellular acid.

UI MeSH Term Description Entries
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D006531 HEPES A dipolar ionic buffer. N-2-Hydroxyethylpiperazine-N'-2'-ethanesulfonic Acid,HEPES Monosodium Salt,Monosodium Salt, HEPES,N 2 Hydroxyethylpiperazine N' 2' ethanesulfonic Acid,Salt, HEPES Monosodium
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000091402 Prohibitins Ubiquitously expressed conserved proteins associated with multiple functions including APOPTOSIS; CELL PROLIFERATION, regulations of various immune and mitochondrial functions, and cellular stress responses. Prohibitin 1 and prohibitin 2 form a ring-shaped complex in the INNER MITOCHONDRIAL MEMBRANE. Prohibitin

Related Publications

M Chesler
September 1951, The Journal of general physiology,
M Chesler
January 1993, Visual neuroscience,
M Chesler
January 2021, Current biology : CB,
M Chesler
December 1979, Journal of molecular evolution,
M Chesler
October 1963, Archives of biochemistry and biophysics,
M Chesler
April 1978, Canadian journal of zoology,
M Chesler
January 1988, General and comparative endocrinology,
Copied contents to your clipboard!