Effects of corneal preservation conditions on human corneal endothelial cell culture. 2019

Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy; Institute of Ophthalmology, University College London, London, UK. Electronic address: m.parekh@ucl.ac.uk.

The purpose of this study was to investigate the growth capacity of human corneal endothelial cells (HCEnCs) isolated from old donor corneas preserved in 4 different storage conditions. The following conditions were evaluated, A) cold storage (CS) (Optisol GS) for 7 days at 4 °C [n = 6]; B) organ culture (OC) (Cornea Max) for 7 days at 31 °C [n = 6]; C) OC for 28 days at 31 °C [n = 6] and; D) CS for 7 days at 4 °C followed by OC for 28 days at 31 °C [n = 6]. Following preservation, the Descemet membrane-endothelium complex was peeled and digested using Collagenase-Type1 and was subsequently trypsinized before being plated into 2 wells (from each cornea) of an 8-well chamber slide. Media was refreshed every alternate day. The confluence rate (%) was assessed, and overall viability was determined using Hoechst, Ethidium Homodimer and CalceinAM staining. HCEnC-associated markers ZO-1, Na+/K+-ATPase, CD166 (Tag1A3), PRDX-6 (Tag2A12) and proliferative marker Ki-67 were used to analyse the cultures established from each condition. Donor tissues preserved in hypothermia (condition A) resulted in 9.3% ± 4.0% trypan-blue positive cells (TBPCs) hence lower number of HCEnCs was plated. <1% TBPCs were observed in conditions B, C and D. Indicatively, confluence in conditions A, B, C and D was 14.0%, 24.8%, 23.4% and 25.4% respectively (p = 0.9836) at day 1. By day 9, HCEnCs established from all conditions became confluent except cells from condition A (94.2% confluence). All HCEnCs in the 4 conditions were viable and expressed HCEnC-associated markers. In conclusion, OC system has advantages over hypothermic media for the preservation of older donor corneas rejected for corneal transplant and deemed suitable for corneal endothelial cell expansion, with lower TBPCs before peeling and longer period of tissue preservation over hypothermic storage system.

UI MeSH Term Description Entries
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D008297 Male Males
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D009926 Organ Preservation The process by which organs are kept viable outside of the organism from which they were removed (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism). Organ Preservations,Preservation, Organ,Preservations, Organ
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002809 Chondroitin Sulfates Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate. Chondroitin 4-Sulfate,Chondroitin 6-Sulfate,Chondroitin Sulfate A,Chondroitin Sulfate C,Blutal,Chondroitin 4-Sulfate, Aluminum Salt,Chondroitin 4-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Sodium Salt,Chondroitin Sulfate,Chondroitin Sulfate 4-Sulfate, Sodium Salt,Chondroitin Sulfate, Calcium Salt,Chondroitin Sulfate, Iron (+3) Salt,Chondroitin Sulfate, Iron Salt,Chondroitin Sulfate, Potassium Salt,Chondroitin Sulfate, Sodium Salt,Chondroitin Sulfate, Zinc Salt,Chonsurid,Sodium Chondroitin Sulfate,Translagen,Chondroitin 4 Sulfate,Chondroitin 4 Sulfate, Aluminum Salt,Chondroitin 4 Sulfate, Potassium Salt,Chondroitin 6 Sulfate,Chondroitin 6 Sulfate, Potassium Salt,Chondroitin 6 Sulfate, Sodium Salt,Chondroitin Sulfate 4 Sulfate, Sodium Salt,Chondroitin Sulfate, Sodium,Sulfate, Chondroitin,Sulfate, Sodium Chondroitin,Sulfates, Chondroitin
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004728 Endothelium, Corneal Single layer of large flattened cells covering the surface of the cornea. Anterior Chamber Epithelium,Corneal Endothelium,Endothelium, Anterior Chamber,Epithelium, Anterior Chamber,Anterior Chamber Endothelium

Related Publications

Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
November 1989, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
March 2008, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
May 2015, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
July 2014, Investigative ophthalmology & visual science,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
May 2021, Acta ophthalmologica,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
February 2015, The British journal of ophthalmology,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
March 2018, Investigative ophthalmology & visual science,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
September 2021, Regenerative medicine,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
April 2007, Molecular vision,
Mohit Parekh, and Gary Peh, and Jodhbir S Mehta, and Sajjad Ahmad, and Diego Ponzin, and Stefano Ferrari
June 1979, Archives of ophthalmology (Chicago, Ill. : 1960),
Copied contents to your clipboard!