The developmental neural substrates of item and serial order components of verbal working memory. 2019

Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium.

Behavioral and developmental studies have made a critical distinction between item and serial order processing components of verbal working memory (WM). This functional magnetic resonance imaging (fMRI) study determined the extent to which item and serial order WM components are characterized by specialized neural networks already in young children or whether this specialization emerges at a later developmental stage. Total of 59 children aged 7-12 years performed item and serial order short-term probe recognition tasks in an fMRI experiment. While a left frontoparietal network was recruited in both item and serial order WM conditions, the right intraparietal sulcus was selectively involved in the serial order WM condition. This neural segregation was modulated by age, with both networks becoming increasingly separated in older children. Our results indicate a progressive specialization of networks involved in item and order WM processes during cognitive development.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008570 Memory, Short-Term Remembrance of information for a few seconds to hours. Immediate Recall,Memory, Immediate,Working Memory,Memory, Shortterm,Immediate Memories,Immediate Memory,Immediate Recalls,Memories, Immediate,Memories, Short-Term,Memories, Shortterm,Memory, Short Term,Recall, Immediate,Recalls, Immediate,Short-Term Memories,Short-Term Memory,Shortterm Memories,Shortterm Memory,Working Memories
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002657 Child Development The continuous sequential physiological and psychological maturing of an individual from birth up to but not including ADOLESCENCE. Infant Development,Development, Child,Development, Infant
D005260 Female Females

Related Publications

Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
September 2017, Memory (Hove, England),
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
June 2019, Journal of neuropsychology,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
March 2019, Cortex; a journal devoted to the study of the nervous system and behavior,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
May 2017, Journal of experimental psychology. General,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
January 2018, Frontiers in psychology,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
September 2013, Psychological science,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
April 2022, Psychonomic bulletin & review,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
January 2015, Child neuropsychology : a journal on normal and abnormal development in childhood and adolescence,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
December 2020, Journal of experimental psychology. Learning, memory, and cognition,
Lucie Attout, and Laura Ordonez Magro, and Arnaud Szmalec, and Steve Majerus
January 2011, Memory & cognition,
Copied contents to your clipboard!