Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim. 1988

J Thillet, and J Absil, and S R Stone, and R Pictet
Unité 257 de l'Institut National de la Santé et de la Recherche Médicale, Institut Jacques Monod du Centre National de la Recherche Scientifique, Paris, France.

Site-directed mutagenesis was used to generate mutants of recombinant mouse dihydrofolate reductase to test the role of some amino acids in the binding of two inhibitors, methotrexate and trimethoprim. Eleven mutations changing eight amino acids at positions all involved in hydrogen bonding or hydrophobic interactions with dihydrofolate or one of the two inhibitors were tested. Nine mutants were obtained by site-directed mutagenesis and two were spontaneous mutants previously obtained by in vivo selection (Grange, T., Kunst, F., Thillet, J., Ribadeau-Dumas, B., Mousseron, S., Hung, A., Jami, J., and Pictet, R. (1984) Nucleic Acids Res. 12, 3585-3601). The choice of the mutated positions was based on the knowledge of the active site of chicken dihydrofolate reductase established by x-ray crystallographic studies since the sequences of all known eucaryotic dihydrofolate reductases are greatly conserved. Enzymes were produced in great amounts and purified using a plasmid expressing the mouse cDNA into a dihydrofolate reductase-deficient Escherichia coli strain. The functional properties of recombinant mouse dihydrofolate reductase purified from bacterial extracts were identical to those of dihydrofolate reductase isolated from eucaryotic cells. The Km(NADPH) values for all the mutants except one (Leu-22----Arg) were only slightly modified, suggesting that the mutations had only minor effects on the ternary conformation of the enzyme. In contrast, all Km(H2folate) values were increased, since the mutations were located in the dihydrofolate binding site. The catalytic activity was also modified for five mutants with, respectively, a 6-, 10-, 36-, and 60-fold decrease of Vmax for Phe-31----Arg, Ile-7----Ser, Trp 24----Arg and Leu-22----Arg mutants and a 2-fold increase for Val-115----Pro. All the mutations affected the binding of methotrexate and six, the binding of trimethoprim: Ile-7----Ser, Leu-22----Arg, Trp-24----Arg, Phe-31----Arg, Gln-35----Pro and Phe-34----Leu. The relative variation of Ki for methotrexate and trimethoprim were not comparable from one mutant to the next, reflecting the different binding modes of the two inhibitors. The mutations which yielded the greatest increases in Ki are those which involved amino acids making hydrophobic contacts with the inhibitor.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008727 Methotrexate An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. Amethopterin,Methotrexate Hydrate,Methotrexate Sodium,Methotrexate, (D)-Isomer,Methotrexate, (DL)-Isomer,Methotrexate, Dicesium Salt,Methotrexate, Disodium Salt,Methotrexate, Sodium Salt,Mexate,Dicesium Salt Methotrexate,Hydrate, Methotrexate,Sodium, Methotrexate
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug

Related Publications

J Thillet, and J Absil, and S R Stone, and R Pictet
January 1993, Advances in experimental medicine and biology,
J Thillet, and J Absil, and S R Stone, and R Pictet
May 1988, Biochemistry,
J Thillet, and J Absil, and S R Stone, and R Pictet
September 1996, Cancer research,
J Thillet, and J Absil, and S R Stone, and R Pictet
November 1983, Science (New York, N.Y.),
J Thillet, and J Absil, and S R Stone, and R Pictet
October 1983, Archives of biochemistry and biophysics,
J Thillet, and J Absil, and S R Stone, and R Pictet
December 1993, Proceedings of the National Academy of Sciences of the United States of America,
J Thillet, and J Absil, and S R Stone, and R Pictet
January 1992, The Journal of biological chemistry,
J Thillet, and J Absil, and S R Stone, and R Pictet
August 1982, Journal of medicinal chemistry,
J Thillet, and J Absil, and S R Stone, and R Pictet
June 2002, Analytical biochemistry,
J Thillet, and J Absil, and S R Stone, and R Pictet
August 2003, The Journal of biological chemistry,
Copied contents to your clipboard!