Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells. 1988

V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
Department of Pathology, New York University Medical Center, New York 10016.

The two main stages of development of the protozoan parasite Trypanosoma cruzi found in the vertebrate host are the trypomastigote and the amastigote. It has been generally assumed that only trypomastigotes are capable of entering cells and that amastigotes are the intracellular replicative form of the parasite. We show here that after incubation for 4 h with human monocytes in vitro 90% or more of extracellularly derived (24 h) amastigotes of T. cruzi are taken up by the cells. Within 2 h they escape the phagocytic vacuole and enter the cytoplasm, where they divide and after 4-5 d transform into trypomastigotes. Trypomastigotes also invade cultured human monocytes. However, they show a lag of several hours between invasion and the start of DNA duplication, while amastigotes commence replication without an apparent lag. Amastigotes also infect cultured fibroblasts, albeit with lower efficiency. When injected intraperitoneally into mice, amastigotes are as infective as trypomastigotes. Based on these results, and on prior findings that amastigotes are found free in the circulation of mice during the acute stage of the disease (3), it seems likely that the cellular uptake of amastigotes can initiate an alternative subcycle within the life cycle of this parasite in the mammalian host. Also, because trypomastigotes and amastigotes have diverse surface antigens, they may use different strategies to invade host cells.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014349 Trypanosoma cruzi The agent of South American trypanosomiasis or CHAGAS DISEASE. Its vertebrate hosts are man and various domestic and wild animals. Insects of several species are vectors. Trypanosoma cruzus,cruzi, Trypanosoma
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
January 1997, The Journal of eukaryotic microbiology,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
June 2013, Cellular microbiology,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
January 1986, Revista do Instituto de Medicina Tropical de Sao Paulo,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
January 1996, The Journal of eukaryotic microbiology,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
July 2018, mBio,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
January 1983, Zeitschrift fur Parasitenkunde (Berlin, Germany),
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
November 2020, Cellular microbiology,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
October 1999, Molecular and biochemical parasitology,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
July 2006, Microbes and infection,
V Ley, and N W Andrews, and E S Robbins, and V Nussenzweig
September 1981, Annales de la Societe belge de medecine tropicale,
Copied contents to your clipboard!