Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. 2019

Qun Wu, and Yan Zhi, and Yan Xu
Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223800, China.

The biosynthesis of surfactin has attracted broad interest; however, there is a bottleneck in its low yield in wild strains and the ability to engineer Bacillus producers. Because the key metabolic mechanisms in the surfactin synthesis pathway remain unclear, genetic engineering approaches are all ending up with a single or a few gene modifications. The aim of this study is to develop a systematic engineering approach to improve the biosynthesis of surfactin. First, we restored surfactin biosynthetic activity by integrating a complete sfp gene into the nonproducing Bacillus subtilis 168 strain and obtained a surfactin titer of 0.4 g/l. Second, we reduced competition by deleting biofilm formation-related genes and nonribosomal peptide synthetases/polyketide synthase pathways (3.8% of the total genome), which increased the surfactin titer by 3.3-fold. Third, we improved cellular tolerance to surfactin by overexpressing potential self-resistance-associated proteins, which further increased the surfactin titer by 8.5-fold. Fourth, we increased the supply of precursor branched-chain fatty acids by engineering the branched-chain fatty acid biosynthesis pathway, resulting in an increase of the surfactin titer to 8.5 g/l (a 20.3-fold increase). Finally, due to the preference of the glycolytic pathway for cell growth, we diverted precursor acetyl-CoA away from cell growth to surfactin biosynthesis by enhancing the transcription of srfA. The final surfactin titer increased to 12.8 g/l, with a yield of 65.0 mmol/mol sucrose (42% of the theoretical yield) in the metabolically engineered strain. To the best of our knowledge, this is the highest titer and yield that has been reported. This study may pave the way for the commercial production of green surfactin. More broadly, our work presents another successful example of the modularization of metabolic pathways for improving titer and yield in biotechnological production.

UI MeSH Term Description Entries
D007651 Keto Acids Carboxylic acids that contain a KETONE group. Oxo Acids,Oxoacids,Acids, Keto,Acids, Oxo
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D053858 Metabolic Networks and Pathways Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites. Metabolic Networks,Metabolic Pathways,Metabolic Network,Metabolic Pathway,Network, Metabolic,Networks, Metabolic,Pathway, Metabolic,Pathways, Metabolic
D055786 Gene Knockout Techniques Techniques to alter a gene sequence that result in an inactivated gene, or one in which the expression can be inactivated at a chosen time during development to study the loss of function of a gene. Gene Knock-Out Techniques,Gene Knock Out,Gene Knock Out Techniques,Gene Knockout,Gene Knock Outs,Gene Knock-Out Technique,Gene Knockout Technique,Gene Knockouts,Knock Out, Gene,Knock Outs, Gene,Knock-Out Technique, Gene,Knock-Out Techniques, Gene,Knockout Technique, Gene,Knockout Techniques, Gene,Knockout, Gene,Knockouts, Gene,Out, Gene Knock,Outs, Gene Knock,Technique, Gene Knock-Out,Technique, Gene Knockout,Techniques, Gene Knock-Out,Techniques, Gene Knockout

Related Publications

Qun Wu, and Yan Zhi, and Yan Xu
May 2024, Microorganisms,
Qun Wu, and Yan Zhi, and Yan Xu
September 1997, Biologicals : journal of the International Association of Biological Standardization,
Qun Wu, and Yan Zhi, and Yan Xu
November 2009, Applied and environmental microbiology,
Qun Wu, and Yan Zhi, and Yan Xu
May 2020, Applied microbiology and biotechnology,
Copied contents to your clipboard!