Microsomal activation of 1- and 3-nitrobenzo[a]pyrene to mutagens in Chinese hamster ovary cells. 1988

J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR 72079.

1- and 3-nitrobenzo[a]pyrene (1- and 3-nitro-BaP) are environmental pollutants and are S9-mediated mutagens in the Chinese hamster ovary (CHO) cell/hypoxanthine-guanine phosphoribosyl transferase assay. In this study, we examined the pathways leading to the mutagenic activation of these compounds in CHO cells. The microsomal metabolites of 1- and 3-nitro-BaP, the 1- and 3-nitro-BaP trans-7,8-dihydroxy-7,8-dihydrodiols (trans-7,8-dihydrodiols) and the 1- and 3-nitro-BaP trans-9,10-dihydrodiols, were isolated and tested for mutagenicity. At the concentrations assayed, both trans-9,10-dihydrodiols were non-mutagenic with and without S9 activation. In contrast, the trans-7,8-dihydrodiols of 1- and 3-nitro-BaP were direct-acting mutagens and these responses were similar in magnitude to the S9-mediated mutagenicities of the parent nitro-BaPs. S9 increased the mutagenic responses of the trans-7,8-dihydrodiols approximately 20-fold. Inhibition of epoxide hydrolase decreased the S9-mediated mutagenicity of 1-nitro-BaP by half, but doubled the S9-mediated mutagenicity of 3-nitro-BaP. These results suggest that in CHO cells: (i) the major route of mutagenic activation of 1- and 3-nitro-BaP involves S9-generated derivatives of the trans-7,8-dihydrodiols, e.g. bay-region diol epoxides; (ii) reactive nitroarene oxides may contribute to mutation induction by 3-nitro-BaP; and (iii) metabolic routes involving trans-9,10-dihydrodiol formation result in detoxification.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001580 Benzopyrenes A class of chemicals that contain an anthracene ring with a naphthalene ring attached to it. Benzpyrene
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.

Related Publications

J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
May 1990, Mutagenesis,
J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
January 1992, Environmental and molecular mutagenesis,
J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
April 1989, Mutation research,
J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
March 1990, Mutagenesis,
J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
January 1998, Environmental and molecular mutagenesis,
J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
June 1988, Carcinogenesis,
J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
January 1980, Xenobiotica; the fate of foreign compounds in biological systems,
J R Thornton-Manning, and M W Chou, and P P Fu, and R H Heflich
March 1985, Somatic cell and molecular genetics,
Copied contents to your clipboard!