The role of the excision-repair enzymes in mutation-induction by cis-Pt(NH3)2Cl2. 1988

J Brouwer, and L Vollebregt, and P van de Putte
Laboratory of Molecular Genetics, Leiden University, The Netherlands.

Mutation induction by cis-Pt(NH3)2Cl2 (cisplatin) has been shown to be absent in E.coli strains carrying a deletion of the uvrB gene (1). This suggested that excision-repair, which is normally thought to be error-free, is involved in mutation induction with cisplatin. Here, the role of the excision repair enzymes UvrA, UvrB and UvrC is investigated using E.coli strains with different repair capacities. It is shown that cisplatin induced mutagenesis is dependent both on UvrA and UvrB but not on UvrC. Of the UvrB enzyme the N-terminal 113 aminoacids are sufficient for mutation induction by cisplatin.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

J Brouwer, and L Vollebregt, and P van de Putte
April 1983, Biochemical and biophysical research communications,
J Brouwer, and L Vollebregt, and P van de Putte
June 1980, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J Brouwer, and L Vollebregt, and P van de Putte
December 1982, Science (New York, N.Y.),
J Brouwer, and L Vollebregt, and P van de Putte
February 2015, Dalton transactions (Cambridge, England : 2003),
J Brouwer, and L Vollebregt, and P van de Putte
January 1975, Bioinorganic chemistry,
J Brouwer, and L Vollebregt, and P van de Putte
September 2022, Molecules (Basel, Switzerland),
J Brouwer, and L Vollebregt, and P van de Putte
October 2014, The journal of physical chemistry. B,
J Brouwer, and L Vollebregt, and P van de Putte
January 1985, Journal of inorganic biochemistry,
J Brouwer, and L Vollebregt, and P van de Putte
February 1982, Biochemical and biophysical research communications,
J Brouwer, and L Vollebregt, and P van de Putte
June 2020, Journal of biomolecular structure & dynamics,
Copied contents to your clipboard!