A Heterozygous Splice-Site Mutation in PTHLH Causes Autosomal Dominant Shortening of Metacarpals and Metatarsals. 2019

Monica Reyes, and Bert Bravenboer, and Harald Jüppner
Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Short metacarpals and/or metatarsals are typically observed in pseudohypoparathyroidism (PHP) type Ia (PHP1A) or pseudo-PHP (PPHP), disorders caused by inactivating GNAS mutations involving exons encoding the alpha-subunit of the stimulatory G protein (Gsα). Skeletal abnormalities similar to those in PHP1A/PPHP were present in several members of an extended Belgian family without evidence for abnormal calcium and phosphate regulation. Direct nucleotide sequencing of genomic DNA from an affected individual (190/III-1) excluded GNAS mutations. Instead, whole exome analysis revealed a novel heterozygous A>G change at nucleotide -3 upstream of PTHLH exon 3 that encodes the last two amino acids of the prosequence and the mature PTHrP. The same nucleotide change was also found in her affected mother and maternal aunt (190/II-2, 190/II-1), and her affected twin sons (190/IV-1, 190/IV-2), but not in her unaffected daughter (190/IV-3) and sister (190/III-2). Complementary DNA derived from immortalized lymphoblastoid cells from 190/IV-2 (affected) and 190/IV-3 (unaffected) was PCR-amplified using forward primers located either in PTHLH exon 1 (noncoding) or exon 2 (presequence and most of the prosequence), and reverse primers located in the 3'-noncoding regions of exons 3 or 4. Nucleotide sequence analysis of these amplicons revealed for the affected son 190/IV-2, but not for the unaffected daughter 190/IV-3, a heterozygous insertion of genomic nucleotides -2 and -1 causing a frameshift after residue 34 of the pre/prosequence and thus 29 novel residues without homology to PTHrP or any other protein. Our findings extend previous reports indicating that PTHrP haploinsufficiency causes skeletal abnormalities similar to those observed with heterozygous GNAS mutations. © 2018 American Society for Bone and Mineral Research.

UI MeSH Term Description Entries
D008297 Male Males
D008682 Metatarsal Bones The five long bones of the METATARSUS, articulating with the TARSAL BONES proximally and the PHALANGES OF TOES distally. Metatarsals,Bone, Metatarsal,Bones, Metatarsal,Metatarsal,Metatarsal Bone
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D005260 Female Females
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Monica Reyes, and Bert Bravenboer, and Harald Jüppner
February 2024, Molecular genetics & genomic medicine,
Monica Reyes, and Bert Bravenboer, and Harald Jüppner
February 2002, The Journal of clinical endocrinology and metabolism,
Monica Reyes, and Bert Bravenboer, and Harald Jüppner
November 2000, Kidney international,
Monica Reyes, and Bert Bravenboer, and Harald Jüppner
January 2012, Molecular vision,
Monica Reyes, and Bert Bravenboer, and Harald Jüppner
September 2016, Ophthalmic genetics,
Monica Reyes, and Bert Bravenboer, and Harald Jüppner
November 2007, The Journal of clinical endocrinology and metabolism,
Monica Reyes, and Bert Bravenboer, and Harald Jüppner
November 2009, BMC nephrology,
Monica Reyes, and Bert Bravenboer, and Harald Jüppner
July 2022, Human genome variation,
Copied contents to your clipboard!