Thyroid hormone binding motifs and iodination pattern of thyroglobulin. 2019

Salvatore Benvenga, and Fabrizio Guarneri
Department of Clinical and Experimental Medicine - Endocrinology, University of Messina, via Consolare Valeria - Gazzi, 98125 Messina, Italy.

A phylogenetically conserved 5-residue thyroid hormone (TH)- binding motif was originally found in a few TH plasma carriers and, more recently, in all known plasma and cell-associated proteins interacting with TH as well as in proteins involved in iodide uptake. Minor variations of the motif were found, depending on the particular class of those proteins. Since thyroglobulin (Tg) is the protein matrix for TH synthesis starting from iodination of a selected number of tyrosines (to form first monoiodotyrosine (MIT) and diiodotyrosine (DIT) and then T3 and T4), we hypothesized that by searching the presence of perfect or imperfect versions of that motif in two Tg species (human and murine) in which the iodinated tyrosines and pattern of iodotyrosine/iodothyronine formation are known, we could have found relevant explanations. Explanations, which are not furnished by the simple possession of tyrosine-iodination motifs and sequence of the iodination motif, concern why only some (but not other) tyrosine residues in one species are iodinated and why they have a particular iodination pattern. In this bioinformatics study, we provide such explanations.

UI MeSH Term Description Entries
D007455 Iodine A nonmetallic element of the halogen group that is represented by the atomic symbol I, atomic number 53, and atomic weight of 126.90. It is a nutritionally essential element, especially important in thyroid hormone synthesis. In solution, it has anti-infective properties and is used topically. Iodine-127,Iodine 127
D007470 Monoiodotyrosine A product from the iodination of tyrosine. In the biosynthesis of thyroid hormones (THYROXINE and TRIIODOTHYRONINE), tyrosine is first iodized to monoiodotyrosine. Iodotyrosine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004105 Diiodotyrosine A product from the iodination of MONOIODOTYROSINE. In the biosynthesis of thyroid hormones, diiodotyrosine residues are coupled with other monoiodotyrosine or diiodotyrosine residues to form T4 or T3 thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Iodogorgoic Acid,Acid, Iodogorgoic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013954 Thyroglobulin
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid

Related Publications

Salvatore Benvenga, and Fabrizio Guarneri
April 1961, Biochimica et biophysica acta,
Salvatore Benvenga, and Fabrizio Guarneri
August 1961, Journal of biochemistry,
Salvatore Benvenga, and Fabrizio Guarneri
January 1984, The Journal of biological chemistry,
Salvatore Benvenga, and Fabrizio Guarneri
June 1981, European journal of biochemistry,
Salvatore Benvenga, and Fabrizio Guarneri
June 1982, European journal of biochemistry,
Salvatore Benvenga, and Fabrizio Guarneri
December 1979, European journal of biochemistry,
Salvatore Benvenga, and Fabrizio Guarneri
January 1967, Bulletin de la Societe de chimie biologique,
Copied contents to your clipboard!