Passive transfer of respiratory syncytial virus (RSV) antiserum suppresses the immune response to the RSV fusion (F) and large (G) glycoproteins expressed by recombinant vaccinia viruses. 1988

B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892.

In young infants who possess maternally derived respiratory syncytial virus (RSV) antibodies, the antibody response to RSV glycoproteins is relatively poor, despite extensive replication of RSV. In the present study, it was found that cotton rat RSV hyperimmune antiserum suppressed the antibody response to the RSV glycoproteins but not the response to vaccinia virus antigens when the antiserum was passively transferred to cotton rats prior to infection with vaccinia recombinant viruses expressing the RSV envelope glycoproteins. The cotton rats which had their immune responses suppressed by passively transferred antibodies were more susceptible to infection with RSV than were animals inoculated with control serum lacking RSV antibodies. Furthermore, many of the immunosuppressed animals infected with the vaccinia recombinant viruses developed RSV glycoprotein antibodies which had abnormally low neutralizing activities. Thus, preexisting serum RSV antibodies had dramatic quantitative and qualitative effects on the immune response to RSV glycoproteins, which may explain, in part, the poor RSV antibody response of young human infants to infection with RSV. Our observations also suggest that immunosuppression by preexisting, passively acquired RSV antibodies may constitute a major obstacle to RSV immunoprophylaxis during early infancy, when immunization is most needed.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D007223 Infant A child between 1 and 23 months of age. Infants
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D010253 Respirovirus Infections Infections with viruses of the genus RESPIROVIRUS, family PARAMYXOVIRIDAE. Host cell infection occurs by adsorption, via HEMAGGLUTININ, to the cell surface. Infections, Respirovirus
D012136 Respiratory Syncytial Viruses A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported. Chimpanzee Coryza Agent,Orthopneumovirus,RSV Respiratory Syncytial Virus,Chimpanzee Coryza Agents,Coryza Agent, Chimpanzee,Orthopneumoviruses,Respiratory Syncytial Virus,Syncytial Virus, Respiratory,Virus, Respiratory Syncytial
D003411 Arvicolinae A subfamily of MURIDAE found nearly world-wide and consisting of about 20 genera. Voles, lemmings, and muskrats are members. Clethrionomys,Cricetidae,Dicrostonyx,Lemmings,Lemmus,Mice, Red-Backed,Microtinae,Microtus,Muskrats,Ondatra,Voles,Arvicolines,Microtines,Mouse, Red-Backed,Myodes,Ondatra zibethicus,Arvicoline,Lemming,Mice, Red Backed,Microtine,Mouse, Red Backed,Muskrat,Red-Backed Mice,Red-Backed Mouse,Vole
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle

Related Publications

B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
March 1991, Vaccine,
B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
June 2004, Journal of virology,
B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
July 1998, Vaccine,
B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
April 2023, Viruses,
B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
August 2005, Journal of virology,
B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
January 2023, Journal of virology,
B R Murphy, and R A Olmsted, and P L Collins, and R M Chanock, and G A Prince
November 1986, Journal of virology,
Copied contents to your clipboard!