Flavonoids modulate multidrug resistance through wnt signaling in P-glycoprotein overexpressing cell lines. 2018

S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India.

BACKGROUND Wnt signaling has been linked with P-glycoprotein (P-gp) overexpression and which was mainly mediated by β-catenin nuclear translocation. Flavonoids have already been reported as modulators of the Wnt/β-catenin pathway and hence they may serve as promising agents in the reversal of P-gp mediated cancer multi drug resistance (MDR). METHODS In this study, we screened selected flavonoids against Wnt/β-catenin signaling molecules. The binding interaction of flavonoids (theaflavin, quercetin, rutin, epicatechin 3 gallate and tamarixetin) with GSK 3β was determined by molecular docking. Flavonoids on P-gp expression and the components of Wnt signaling in drug-resistant KBCHR8-5 cells were analyzed by western blotting and qRT-PCR. The MDR reversal potential of these selected flavonoids against P-gp mediated drug resistance was analyzed by cytotoxicity assay in KBCHR8-5 and MCF7/ADR cell lines. The chemosensitizing potential of flavonoids was further analyzed by observing cell cycle arrest in KBCHR8-5 cells. RESULTS In this study, we observed that the components of Wnt/β-catenin pathway such as Wnt and GSK 3β were activated in multidrug resistant KBCHR8-5 cell lines. All the flavonoids selected in this study significantly decreased the expression of Wnt and GSK 3β in KBCHR8-5 cells and subsequently modulates P-gp overexpression in this drug-resistant cell line. Further, we observed that these flavonoids considerably decreased the doxorubicin resistance in KBCHR8-5 and MCF7/ADR cell lines. The MDR reversal potential of flavonoids were found to be in the order of theaflavin > quercetin > rutin > epicatechin 3 gallate > tamarixetin. Moreover, we observed that flavonoids pretreatment significantly induced the doxorubicin-mediated arrest at the phase of G2/M. Further, the combinations of doxorubicin with flavonoids significantly modulate the expression of drug response genes in KBCHR8-5 cells. CONCLUSIONS The present findings illustrate that the studied flavonoids significantly enhances doxorubicin-mediated cell death through modulating P-gp expression pattern by targeting Wnt/β-catenin signaling in drug-resistant KBCHR8-5 cells.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071679 Glycogen Synthase Kinase 3 beta A glycogen synthase kinase-3 type enzyme that functions in ENERGY METABOLISM; EMBRYONIC DEVELOPMENT; and NEUROGENESIS. It is also involved in PROTEIN BIOSYNTHESIS and regulates cell growth and proliferation as a component of the WNT SIGNALING PATHWAY and other signaling pathways. Certain polymorphisms in the GSK3B gene have been associated with PARKINSON DISEASE; ALZHEIMER DISEASE; and BIPOLAR DISORDER. GSK-3beta,GSK3B Protein,GSK3beta,GSK 3beta
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
December 2002, Molecular cancer therapeutics,
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
March 2024, Natural product research,
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
June 2003, British journal of cancer,
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
September 1983, Science (New York, N.Y.),
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
June 1997, Biochemical pharmacology,
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
April 1989, FEBS letters,
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
December 2022, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
January 1997, British journal of cancer,
S Mohana, and M Ganesan, and N Rajendra Prasad, and D Ananthakrishnan, and D Velmurugan
May 2009, Current cancer drug targets,
Copied contents to your clipboard!