Effects of cell mediated immunity in influenza virus infection in mice. 1977

J L Schulman, and C Petigrow, and J Woodruff

The role of cell mediated immune responses in recovery of mice from influenza virus infection was studied by immunosuppression and by adoptive immunization. Virus infections persisted longer and produced more severe lung lesions in animals injected with anti-thymocyte serum (ATS), and immunosuppressed animals failed to mount a serum HI antibody response. Mice injected with ATS after the 4th day of infection produced antibody in titers equivalent to those of control animals but still did not recover from infection as rapidly. Passive immunization with antibody late in infection did not facilitate clearance of virus from ATS injected animals. Adoptive transfer of spleen cells obtained from syngeneic animals sensitized intraperitoneally resulted in more rapid clearance of virus and less severe lung lesions in infected recipient animals. This effect was associated with a lower antibody response in recipient mice. Adoptive immunization was still effective after depletion of beta lymphocytes from the transferred cell population. These effects correlate with in vitro assays of the cytotoxic T cell response and antibody forming cell response of sensitized mice. From these observations we conclude that T lymphocytes may play a role in recovery from influenza virus infection by mechanisms other than helper effects.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007112 Immunity, Maternally-Acquired Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk. Fetal Immunity, Maternally-Acquired,Maternally-Acquired Immunity,Neonatal Immunity, Maternally-Acquired,Immunity, Maternally Acquired,Fetal Immunities, Maternally-Acquired,Fetal Immunity, Maternally Acquired,Immunity, Maternally-Acquired Fetal,Immunity, Maternally-Acquired Neonatal,Maternally Acquired Immunities,Maternally Acquired Immunity,Maternally-Acquired Fetal Immunities,Maternally-Acquired Fetal Immunity,Maternally-Acquired Immunities,Maternally-Acquired Neonatal Immunities,Maternally-Acquired Neonatal Immunity,Neonatal Immunities, Maternally-Acquired,Neonatal Immunity, Maternally Acquired
D009976 Orthomyxoviridae Infections Virus diseases caused by the ORTHOMYXOVIRIDAE. Orthomyxovirus Infections,Infections, Orthomyxoviridae,Infections, Orthomyxovirus,Swine Influenza,Infection, Orthomyxoviridae,Infection, Orthomyxovirus,Influenza, Swine,Orthomyxoviridae Infection,Orthomyxovirus Infection
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D006389 Hemagglutinins, Viral Specific hemagglutinin subtypes encoded by VIRUSES. Viral Hemagglutinin,Viral Hemagglutinins,Hemagglutinin, Viral
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D000961 Antilymphocyte Serum Serum containing GAMMA-GLOBULINS which are antibodies for lymphocyte ANTIGENS. It is used both as a test for HISTOCOMPATIBILITY and therapeutically in TRANSPLANTATION. ATGAM,Antilymphoblast Globulins,Antilymphocyte Antibodies,Antilymphocyte Globulin,Lymphocytotoxic Antibodies,Anti-Thymocyte Globulin,Antilymphocyte Immunoglobulin,Antithymocyte Globulin,Antithymoglobulin,Lymphocyte Immune Globulin, Anti-Thymocyte Globulin,Lymphocyte Immune Globulin, Anti-Thymocyte Globulin (Equine),Pressimmune,Anti Thymocyte Globulin,Anti-Thymocyte Globulins,Antibodies, Antilymphocyte,Antibodies, Lymphocytotoxic,Antibody, Antilymphocyte,Antibody, Lymphocytotoxic,Antilymphoblast Globulin,Antilymphocyte Antibody,Antilymphocyte Globulins,Antilymphocyte Immunoglobulins,Antilymphocyte Serums,Antithymocyte Globulins,Antithymoglobulins,Globulin, Anti-Thymocyte,Globulin, Antilymphoblast,Globulin, Antilymphocyte,Globulin, Antithymocyte,Globulins, Anti-Thymocyte,Globulins, Antilymphoblast,Globulins, Antilymphocyte,Globulins, Antithymocyte,Immunoglobulin, Antilymphocyte,Immunoglobulins, Antilymphocyte,Lymphocyte Immune Globulin, Anti Thymocyte Globulin,Lymphocytotoxic Antibody,Serum, Antilymphocyte,Serums, Antilymphocyte
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

J L Schulman, and C Petigrow, and J Woodruff
January 1977, Infection and immunity,
J L Schulman, and C Petigrow, and J Woodruff
September 1982, Immunology,
J L Schulman, and C Petigrow, and J Woodruff
January 1987, Bollettino dell'Istituto sieroterapico milanese,
J L Schulman, and C Petigrow, and J Woodruff
September 2013, Journal of immunology (Baltimore, Md. : 1950),
J L Schulman, and C Petigrow, and J Woodruff
January 1975, Acta medica Iugoslavica,
J L Schulman, and C Petigrow, and J Woodruff
December 1987, Immunology letters,
J L Schulman, and C Petigrow, and J Woodruff
January 1977, Developments in biological standardization,
J L Schulman, and C Petigrow, and J Woodruff
December 1996, International journal of pediatric otorhinolaryngology,
J L Schulman, and C Petigrow, and J Woodruff
August 1968, Journal of virology,
Copied contents to your clipboard!