Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases. 2018

Daisuke Kohda
Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan. kohda@bioreg.kyushu-u.ac.jp.

Glycosylation of asparagine residues is a ubiquitous protein modification. This N-glycosylation is essential in Eukaryotes, but principally nonessential in Prokaryotes (Archaea and Eubacteria), although it facilitates their survival and pathogenicity. In many reviews, Archaea have received far less attention than Eubacteria, but this review will cover the N-glycosylation in the three domains of life. The oligosaccharide chain is preassembled on a lipid-phospho carrier to form a donor substrate, lipid-linked oligosaccharide (LLO). The en bloc transfer of an oligosaccharide from LLO to selected Asn residues in the Asn-X-Ser/Thr (X≠Pro) sequons in a polypeptide chain is catalyzed by a membrane-bound enzyme, oligosaccharyltransferase (OST). Over the last 10 years, the three-dimensional structures of the catalytic subunits of the Stt3/AglB/PglB proteins, with an acceptor peptide and a donor LLO, have been determined by X-ray crystallography, and recently the complex structures with other subunits have been determined by cryo-electron microscopy . Structural comparisons within the same species and across the different domains of life yielded a unified view of the structures and functions of OSTs. A catalytic structure in the TM region accounts for the amide bond twisting, which increases the reactivity of the side-chain nitrogen atom of the acceptor Asn residue in the sequon. The Ser/Thr-binding pocket in the C-terminal domain explains the requirement for hydroxy amino acid residues in the sequon. As expected, the two functional structures are formed by the involvement of short amino acid motifs conserved across the three domains of life.

UI MeSH Term Description Entries
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006602 Hexosyltransferases Enzymes that catalyze the transfer of hexose groups. EC 2.4.1.-.
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine
D020285 Cryoelectron Microscopy Electron microscopy involving rapid freezing of the samples. The imaging of frozen-hydrated molecules and organelles permits the best possible resolution closest to the living state, free of chemical fixatives or stains. Electron Cryomicroscopy,Cryo-electron Microscopy,Cryo electron Microscopy,Cryo-electron Microscopies,Cryoelectron Microscopies,Cryomicroscopies, Electron,Cryomicroscopy, Electron,Electron Cryomicroscopies,Microscopies, Cryo-electron,Microscopies, Cryoelectron,Microscopy, Cryo-electron,Microscopy, Cryoelectron

Related Publications

Daisuke Kohda
January 2013, Methods in molecular biology (Clifton, N.J.),
Daisuke Kohda
September 2007, Journal of structural and functional genomics,
Copied contents to your clipboard!