The action of acetylcholine on background conductance in frog atrial trabeculae. 1978

D Garnier, and J Nargeot, and C Ojeda, and O Rougier

The action of acetylcholine (ACh) on membrane potential and currents in frog atrial muscle has been studied with a double sucrose gap technique. The results show the following. 1. ACh induces the development of an extra current, outward at the resting potential, which is dependent on the ACh concentration. 2. The preparation does not show any sign of desensitization. 3. The reversal potential of the current induced by ACh is between 0 and 20 mV more negative than the resting potential and behaves as a K electrode. 4. The mechanism of ACh-induced K conductance presents inward going rectification properties. 5. The delayed outward current is not affected by ACh. However the evolution of its tail current seems to indicate a process of K accumulation related to the ACh-induced current.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Garnier, and J Nargeot, and C Ojeda, and O Rougier
January 1980, Biofizika,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
August 1992, Toxicon : official journal of the International Society on Toxinology,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
April 1990, The American journal of physiology,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
September 1994, Experimental physiology,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
September 1985, Canadian journal of physiology and pharmacology,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
August 1983, Biulleten' eksperimental'noi biologii i meditsiny,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
November 1977, Journal of molecular and cellular cardiology,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
January 1972, Pflugers Archiv : European journal of physiology,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
October 1975, Biophysical journal,
D Garnier, and J Nargeot, and C Ojeda, and O Rougier
October 1975, Biophysical journal,
Copied contents to your clipboard!