Neural cell adhesion molecules during embryonic induction and development of the kidney. 1988

G Klein, and M Langegger, and C Goridis, and P Ekblom
Friedrich-Miescher Laboratorium der Max-Planck-Gesellschaft, Tübingen, FRG.

The neural cell adhesion molecules (N-CAM) are a family of related glycoproteins with Mr of 180, 140 and 120 x 10(3) (180K etc.). In the embryo, they are often highly sialylated and migrate as a diffuse band of 170-250K. N-CAM are found in non-neural tissues and we have now studied the expression of N-CAM in the developing mouse kidney. During kidney development, a unique conversion of a mesenchyme to an epithelium occurs and it is thought that this is mediated by an increase in cell adhesivity. By immunofluorescence, we show that N-CAM is present already at onset of kidney development on the cells of the uninduced nephrogenic mesenchyme. After induction, when the cells convert into an epithelium, they lose N-CAM gradually and instead begin to express uvomorulin, another primary CAM. By using an organ culture model, we could rather precisely show that N-CAM and uvomorulin are coexpressed for a short period, but, when epithelial cell polarization is evident, only uvomorulin is present on the epithelium, whereas N-CAM is confined to the surrounding mesenchyme. Immunoblotting for N-CAM revealed that the 'embryonic' form of N-CAM, the broad 170-250K band was not present in the embryonic kidney, which instead expressed the three distinct 180K, 140K and 120K bands typical of adult neurones. The 180K and 140K bands were gradually lost during development and were no longer detectable in adult kidneys. By using an N-CAM cDNA, we detected three different mRNAs of 7.4, 6.7 and 4.3 kb in the developing kidney, but this expression was restricted to the embryonic and early postnatal stages. No transcripts were detectable in adult kidneys. The studies do not support the hypothesis that N-CAM expression in the kidney is turned on by embryonic induction. Rather, we suggest that N-CAM are important adhesives for the predetermined, but not yet induced, nephrogenic mesenchyme.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell

Related Publications

G Klein, and M Langegger, and C Goridis, and P Ekblom
May 1989, Clinical chemistry,
G Klein, and M Langegger, and C Goridis, and P Ekblom
January 1987, Developmental biology,
G Klein, and M Langegger, and C Goridis, and P Ekblom
July 1990, Experimental neurology,
G Klein, and M Langegger, and C Goridis, and P Ekblom
January 1989, Developmental neuroscience,
G Klein, and M Langegger, and C Goridis, and P Ekblom
April 1995, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
G Klein, and M Langegger, and C Goridis, and P Ekblom
January 2014, PloS one,
G Klein, and M Langegger, and C Goridis, and P Ekblom
July 1988, Physiological reviews,
G Klein, and M Langegger, and C Goridis, and P Ekblom
January 2001, Bratislavske lekarske listy,
G Klein, and M Langegger, and C Goridis, and P Ekblom
June 2017, Molecular and cellular neurosciences,
G Klein, and M Langegger, and C Goridis, and P Ekblom
September 1989, European journal of immunology,
Copied contents to your clipboard!