Bioactivity and pharmacokinetics of human proinsulin in comparison to human insulin after intravenous and subcutaneous injection. 1988

H Schatz, and S Ammermann, and H Laube, and K Federlin
III. Medizinische Klinik und Poliklinik der Universität Giessen, Germany.

The hypoglycemic actions of human insulin (1 IU/kg b.w.) and biosynthetic human proinsulin in about equimolar amounts were studied after intravenous and subcutaneous injection in rabbits. Blood samples were taken up to four hours after injection for the determination of blood glucose and immunoreactive levels of both insulin and human C-peptide. For the determination of human C-peptide, serum taken after proinsulin injection was divided into two fractions. One was examined directly by the human C-peptide radioimmunoassay and the other after incubation with a protein-A-sepharose coupled insulin antibody to find "free human C-peptide". Proinsulin in amounts equimolar to 1 IU insulin/kg b.w., exerted a 34% stronger hypoglycemic action after subcutaneous injection than after intravenous administration (area under curve estimation). Proinsulin-induced hypoglycemia did not last longer after intravenous administration than that induced by intravenous insulin. Although subcutaneous proinsulin did not show the same maximum decrease of blood glucose compared to subcutaneous insulin, its action was significantly prolonged (up to 180 min). Specific measurement of free human C-peptide showed no evidence of conversion of proinsulin to insulin and C-peptide.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Schatz, and S Ammermann, and H Laube, and K Federlin
August 2017, Drug metabolism and pharmacokinetics,
H Schatz, and S Ammermann, and H Laube, and K Federlin
March 1988, Experimental and clinical endocrinology,
H Schatz, and S Ammermann, and H Laube, and K Federlin
January 1988, Hormone and metabolic research. Supplement series,
H Schatz, and S Ammermann, and H Laube, and K Federlin
March 1991, Journal of veterinary pharmacology and therapeutics,
H Schatz, and S Ammermann, and H Laube, and K Federlin
June 1977, Schweizerische medizinische Wochenschrift,
H Schatz, and S Ammermann, and H Laube, and K Federlin
April 1987, Diabetes research (Edinburgh, Scotland),
H Schatz, and S Ammermann, and H Laube, and K Federlin
November 1998, Clinical pharmacology and therapeutics,
H Schatz, and S Ammermann, and H Laube, and K Federlin
August 1994, British journal of haematology,
H Schatz, and S Ammermann, and H Laube, and K Federlin
January 1986, Biopharmaceutics & drug disposition,
Copied contents to your clipboard!