Regulation of renin gene expression in hypertensive rats. 1988

S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
Section of Hypertension, Boston University School of Medicine, Massachusetts 02118.

A carboxy terminal renin complementary DNA (cDNA) clone from rat kidney was isolated, characterized, and used as a probe for renin messenger RNA (mRNA) quantification in normotensive and hypertensive rats. RNA blotting analysis detected renin mRNA in control kidney and brain. Deoxycorticosterone acetate (DOCA) and high salt (1%) treatment of experimental animals resulted in a greater than 95% decrease in the content of renin mRNA in the kidney, as compared with values in control rats receiving 0.4% NaCl in their diet. In contrast, high salt (1%) treatment alone caused only a twofold decrease in kidney renin mRNA content, as compared with values in controls. DOCA and low salt (0.04%) or low salt (0.04%) treatment alone caused a 1.5-fold increase in the kidney renin mRNA content, as compared with values in control rats. These results indicate that DOCA and salt have a synergistic effect in depressing renin mRNA levels in kidney. Clipping of the left renal artery caused a threefold increase in the steady state level of renin mRNA in the ischemic kidney and a 0.5-fold decrease in the hypertrophied kidney. The data are consistent with the hypothesis that blood pressure and other stimuli regulate the expression of the renin gene in vivo.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D003900 Desoxycorticosterone A steroid metabolite that is the 11-deoxy derivative of CORTICOSTERONE and the 21-hydroxy derivative of PROGESTERONE 21-Hydroxyprogesterone,Cortexone,Deoxycorticosterone,Desoxycortone,11-Decorticosterone,21-Hydroxy-4-pregnene-3,20-dione,11 Decorticosterone,21 Hydroxy 4 pregnene 3,20 dione,21 Hydroxyprogesterone
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
September 1989, Journal of hypertension,
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
April 1995, Hypertension (Dallas, Tex. : 1979),
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
January 1992, Blood pressure. Supplement,
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
November 1993, American journal of hypertension,
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
August 1992, Journal of biochemistry,
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
November 1995, Hypertension (Dallas, Tex. : 1979),
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
October 2009, Bulletin of experimental biology and medicine,
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
June 1996, Hypertension (Dallas, Tex. : 1979),
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
November 1987, Hypertension (Dallas, Tex. : 1979),
S C Makrides, and R Mulinari, and V I Zannis, and H Gavras
November 1993, The American journal of physiology,
Copied contents to your clipboard!