Structure and expression of the genes encoding the alpha and beta subunits of yeast phenylalanyl-tRNA synthetase. 1988

A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
Institute de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France.

The two genes FRS1 and FRS2 encoding, respectively, the large (alpha) and small (beta) subunits of cytoplasmic phenylalanyl-tRNA synthetase from bakers' yeast have been cloned and sequenced. The derived protein primary structures are confirmed by peptide sequences evenly distributed along the reading frames. These predict a subunit Mr of 67,347 for alpha and 57,433 for beta, in good agreement with earlier determinations carried out on the purified protein. These subunit sequences have been compared to those of Escherichia coli phenylalanyl-tRNA synthetase as well as to the small beta subunit of the corresponding yeast mitochondrial enzyme; limited but significant homology was found between the two alpha subunits on the one hand and between the three beta subunits on the other hand. The results suggest that these three enzymes, from E. coli, yeast cytoplasm, and yeast mitochondria, have strongly diverged from one another. The initiation sites of transcription have been determined for both yeast genes. Their 5'-upstream regions show no sequence similarities that would have indicated a coordinate control of gene expression at the transcriptional level. Measurements of steady-state levels of FRS-mRNAs in overproducing strains indicate that there is no restriction in mRNA synthesis. Therefore the control of gene expression, leading to a balanced synthesis of alpha and beta subunits, is likely to occur at the translational level.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
April 1990, Nucleic acids research,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
January 1986, Biochimie,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
June 1986, Biochemical and biophysical research communications,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
April 1975, FEBS letters,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
December 1977, FEBS letters,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
May 1980, Biochemical and biophysical research communications,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
October 1990, Biochimie,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
August 1976, Journal of bacteriology,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
August 1978, Biochimica et biophysica acta,
A Sanni, and M Mirande, and J P Ebel, and Y Boulanger, and J P Waller, and F Fasiolo
December 1981, Nucleic acids research,
Copied contents to your clipboard!